This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort o...This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering ...Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.展开更多
The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective...Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.展开更多
The present building facility management status in China resulted in many problems such as high energy consumption,failure of automation control,services failure and poor indoor air quality.Based on questionnaires and...The present building facility management status in China resulted in many problems such as high energy consumption,failure of automation control,services failure and poor indoor air quality.Based on questionnaires and interviews to professional engineers and building users,a comprehensive evaluation index system was established on facility management of high-rise office buildings.A Fuzzy AHP based upon hierarchy criteria system was established.A Fuzzy AHP Evaluation Model on Facility Management System was set up;α-cut analysis was introduced and incorporated with expert knowledge together,which made up the optimism index λ.The fuzzy optimum crisp weight of each criterion was resulted from data-mining.Case investigations were processed in high-rise office buildings in Shenyang.The results illustrated that indoor air quality,thermal comfort and life cycle cost were the most important indexes in the evaluation of Facility Management System of high rise office buildings.Residents in high-rise buildings in Shenyang pay less attention to maintenance management and environment protection.By comparison with the analysis result of Export Choice,Fuzzy AHP-based evaluation model could act as a scientific reference for the establishment of governmental standards in facility management area in building.展开更多
Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current manag...Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current management and construction requirements,so it is necessary to further optimize the construction management technology.Therefore,this paper focuses on exploring measures regarding building construction technology optimization.Firstly,the paper briefly expounds its optimization value,then systematically analyzes some problems faced by the current housing construction management,and finally puts forward some targeted management optimization measures for future reference.展开更多
The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of ...The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in three-dimensions (3D) and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.展开更多
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte...Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.展开更多
The concept of utilizing microgrids(MGs)to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits.These pro-sumer buildings consist of renewable energy source...The concept of utilizing microgrids(MGs)to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits.These pro-sumer buildings consist of renewable energy sources and usually install battery energy storage systems(BESSs)to deal with the uncertain nature of renewable energy sources.However,because of the high capital investment of BESS and the limitation of available energy,there is a need for an effective energy management strategy for prosumer buildings that maximizes the profit of building owner and increases the operating life span of BESS.In this regard,this paper proposes an improved energy management strategy(IEMS)for the prosumer building to minimize the operating cost of MG and degradation factor of BESS.Moreover,to estimate the practical operating life span of BESS,this paper utilizes a non-linear battery degradation model.In addition,a flexible load shifting(FLS)scheme is also developed and integrated into the proposed strategy to further improve its performance.The proposed strategy is tested for the real-time annual data of a grid-tied solar photovoltaic(PV)and BESS-powered AC-DC hybrid MG installed at a commercial building.Moreover,the scenario reduction technique is used to handle the uncertainty associated with generation and load demand.To validate the performance of the proposed strategy,the results of IEMS are compared with the well-established energy management strategies.The simulation results verify that the proposed strategy substantially increases the profit of the building owner and operating life span of BESS.Moreover,FLS enhances the performance of IEMS by further improving the financial profit of MG owner and the life span of BESS,thus making the operation of prosumer building more economical and efficient.展开更多
The buildings construction safety problems contain various safety-hidden dangers that caused by the human unsafe behaviors, the substance unsafe conditions, operation environment unsafe factors and management defects....The buildings construction safety problems contain various safety-hidden dangers that caused by the human unsafe behaviors, the substance unsafe conditions, operation environment unsafe factors and management defects. The authors summarize comprehensively the problems of buildings construetion safety in China at present based on grasping the whole safety status of buildings construction, and the synthetic countermeasures including the systems about laws, management, technology and education civilization for buildings construction safety management are brought up based on the viewpoint of safety system theory. Then it is thought that huilding scientific management mechanisms and popularizing effective management methods and measures are the fundamental ways for improving further the level of safety management for buildings construction in China at present.展开更多
Rural finance is an issue concerned with rural people, improving rural financial management is important to close the relations of cadres and masses, maintain rural stability, and promote rural economic development. T...Rural finance is an issue concerned with rural people, improving rural financial management is important to close the relations of cadres and masses, maintain rural stability, and promote rural economic development. This article explained the main problems of village financial, the needs of introducing commission and agent system of "village-level accounting" for building a new socialist countryside, and the measures of improving commission and agent system of "village-level accounting".展开更多
Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydri...Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined equivalent network circuits for both systems represent the main contribution of this paper. These electronic network models describe the behavior of batteries during normal operation and during over (dis) charging in the case of the aqueous battery systems. This makes it possible to visualize the various reaction pathways, including convention and pulse (dis) charge behavior and for example, the self-discharge performance.展开更多
The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factor...The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factors and environments. For example, the mobile applications usually require frequent cross-equipment compatibility. This paper proposes a reasonable BIM-based FM cross-platform framework and develops a mobile application on the basis of an existing BIM-based FM system. The developed mobile application is applied in a case study of a metro station project in Guangzhou to verify its effectiveness in FM practice. It helps maintenance staff in viewing BIMs, accessing related information, and updating maintenance records in a unique platform. The test results demonstrate that the proposed BIM-based cross-platform framework meet the FM application requirements and supports the extension of FM functions.展开更多
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste...This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.展开更多
The status of utilization and disposal of the building wastes are introduced on the basis of analysis of its compositions, genera- tion and effects on urban environment. The basic framework of the integrated building ...The status of utilization and disposal of the building wastes are introduced on the basis of analysis of its compositions, genera- tion and effects on urban environment. The basic framework of the integrated building waste management, including control of the sources, reduction of the integrated process and final disposal, are proposed in view of the problems existing in recovery of the building wastes and the experiences from the developed countries.展开更多
The developed modem control systems and buildings management resource systems would be effective if they are based on previously established optimal conditions during the building design. This is one of the key issues...The developed modem control systems and buildings management resource systems would be effective if they are based on previously established optimal conditions during the building design. This is one of the key issues for a responsible architecture. The focus of this paper is on sustainable design methods and techniques for saving resources and their management throughout the building lifecycle. The main subject of the present article is the characteristics of these methods and their fundamental role in sustainable resource management during the building operation. The results which are based on conducted case studies of European and international practice in the construction of sustainable buildings are implemented here. Key features of a comprehensive approach for design and construction are outlined via comparative analysis, as well as various systems for the evaluation of sustainability for already constructed buildings. The mostly used criteria and indicators for sustainability are systematized, including those related to resource consumption. By analyzing a specific example, the role of sustainable design methods is justified as an important prerequisite for effective management of building resources in the process building maintenance. According to the conducted studies, during the longest life cycle period of a building, by implementation of control systems and resource management of building, the costs are successfully optimized. Specific directions that prove the effectiveness of such systems are systematized in the paper. Innovative approaches, complex methods and measures for design and management of buildings resources are presented as results of this study.展开更多
文摘This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
文摘Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
基金The first three authors who conducted this research were partly funded by the Industrial Assessment Center Project,supported by grants from the US Department of Energy and by the West Virginia Development Office.
文摘Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.
文摘The present building facility management status in China resulted in many problems such as high energy consumption,failure of automation control,services failure and poor indoor air quality.Based on questionnaires and interviews to professional engineers and building users,a comprehensive evaluation index system was established on facility management of high-rise office buildings.A Fuzzy AHP based upon hierarchy criteria system was established.A Fuzzy AHP Evaluation Model on Facility Management System was set up;α-cut analysis was introduced and incorporated with expert knowledge together,which made up the optimism index λ.The fuzzy optimum crisp weight of each criterion was resulted from data-mining.Case investigations were processed in high-rise office buildings in Shenyang.The results illustrated that indoor air quality,thermal comfort and life cycle cost were the most important indexes in the evaluation of Facility Management System of high rise office buildings.Residents in high-rise buildings in Shenyang pay less attention to maintenance management and environment protection.By comparison with the analysis result of Export Choice,Fuzzy AHP-based evaluation model could act as a scientific reference for the establishment of governmental standards in facility management area in building.
文摘Building construction needs have expanded in line with people's demands and the quality of life in today’s society.Therefore,the traditional construction management technology can no longer meet the current management and construction requirements,so it is necessary to further optimize the construction management technology.Therefore,this paper focuses on exploring measures regarding building construction technology optimization.Firstly,the paper briefly expounds its optimization value,then systematically analyzes some problems faced by the current housing construction management,and finally puts forward some targeted management optimization measures for future reference.
文摘The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in three-dimensions (3D) and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
文摘Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs.
基金supported in part by the Department of Science and Technology,Government of India,New Delhi,India“Internet of Things(IoT)Research of Interdisciplinary Cyber-Physical Systems Program”(No.DST/ICPS/CLUSTER/IoT/2018/General)。
文摘The concept of utilizing microgrids(MGs)to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits.These pro-sumer buildings consist of renewable energy sources and usually install battery energy storage systems(BESSs)to deal with the uncertain nature of renewable energy sources.However,because of the high capital investment of BESS and the limitation of available energy,there is a need for an effective energy management strategy for prosumer buildings that maximizes the profit of building owner and increases the operating life span of BESS.In this regard,this paper proposes an improved energy management strategy(IEMS)for the prosumer building to minimize the operating cost of MG and degradation factor of BESS.Moreover,to estimate the practical operating life span of BESS,this paper utilizes a non-linear battery degradation model.In addition,a flexible load shifting(FLS)scheme is also developed and integrated into the proposed strategy to further improve its performance.The proposed strategy is tested for the real-time annual data of a grid-tied solar photovoltaic(PV)and BESS-powered AC-DC hybrid MG installed at a commercial building.Moreover,the scenario reduction technique is used to handle the uncertainty associated with generation and load demand.To validate the performance of the proposed strategy,the results of IEMS are compared with the well-established energy management strategies.The simulation results verify that the proposed strategy substantially increases the profit of the building owner and operating life span of BESS.Moreover,FLS enhances the performance of IEMS by further improving the financial profit of MG owner and the life span of BESS,thus making the operation of prosumer building more economical and efficient.
基金A Project Supported by Scientific Research Fund of Hunan Provincial Education Department(06C309)
文摘The buildings construction safety problems contain various safety-hidden dangers that caused by the human unsafe behaviors, the substance unsafe conditions, operation environment unsafe factors and management defects. The authors summarize comprehensively the problems of buildings construetion safety in China at present based on grasping the whole safety status of buildings construction, and the synthetic countermeasures including the systems about laws, management, technology and education civilization for buildings construction safety management are brought up based on the viewpoint of safety system theory. Then it is thought that huilding scientific management mechanisms and popularizing effective management methods and measures are the fundamental ways for improving further the level of safety management for buildings construction in China at present.
基金The Stage Achievement of the Item "Theory and Policy Research on Building A New Socialist Countryside"in Heilongjiang Philosophy and Social Service Research Base (Economic of Agricultural and Rural Area) (05zd001)
文摘Rural finance is an issue concerned with rural people, improving rural financial management is important to close the relations of cadres and masses, maintain rural stability, and promote rural economic development. This article explained the main problems of village financial, the needs of introducing commission and agent system of "village-level accounting" for building a new socialist countryside, and the measures of improving commission and agent system of "village-level accounting".
文摘Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined equivalent network circuits for both systems represent the main contribution of this paper. These electronic network models describe the behavior of batteries during normal operation and during over (dis) charging in the case of the aqueous battery systems. This makes it possible to visualize the various reaction pathways, including convention and pulse (dis) charge behavior and for example, the self-discharge performance.
基金Supported by the National High-tech Research and Development Program of China(2013AA041307)the National Natural Science Foundation of China(51478249)the Tsinghua University-Glodon Joint Research Centre for Building Information Model
文摘The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factors and environments. For example, the mobile applications usually require frequent cross-equipment compatibility. This paper proposes a reasonable BIM-based FM cross-platform framework and develops a mobile application on the basis of an existing BIM-based FM system. The developed mobile application is applied in a case study of a metro station project in Guangzhou to verify its effectiveness in FM practice. It helps maintenance staff in viewing BIMs, accessing related information, and updating maintenance records in a unique platform. The test results demonstrate that the proposed BIM-based cross-platform framework meet the FM application requirements and supports the extension of FM functions.
文摘This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.
文摘The status of utilization and disposal of the building wastes are introduced on the basis of analysis of its compositions, genera- tion and effects on urban environment. The basic framework of the integrated building waste management, including control of the sources, reduction of the integrated process and final disposal, are proposed in view of the problems existing in recovery of the building wastes and the experiences from the developed countries.
文摘The developed modem control systems and buildings management resource systems would be effective if they are based on previously established optimal conditions during the building design. This is one of the key issues for a responsible architecture. The focus of this paper is on sustainable design methods and techniques for saving resources and their management throughout the building lifecycle. The main subject of the present article is the characteristics of these methods and their fundamental role in sustainable resource management during the building operation. The results which are based on conducted case studies of European and international practice in the construction of sustainable buildings are implemented here. Key features of a comprehensive approach for design and construction are outlined via comparative analysis, as well as various systems for the evaluation of sustainability for already constructed buildings. The mostly used criteria and indicators for sustainability are systematized, including those related to resource consumption. By analyzing a specific example, the role of sustainable design methods is justified as an important prerequisite for effective management of building resources in the process building maintenance. According to the conducted studies, during the longest life cycle period of a building, by implementation of control systems and resource management of building, the costs are successfully optimized. Specific directions that prove the effectiveness of such systems are systematized in the paper. Innovative approaches, complex methods and measures for design and management of buildings resources are presented as results of this study.