Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-cond...Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.展开更多
Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and...Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and humid climate is even more difficult.Studies conducted in naturally ventilated hostel buildings in warm-humid climates involved the influence of outdoor air temperature only up to 34.4℃ and have been conducted in a specific season.In contrast,the Tiruchirappalli climate is characterized by a higher range of environmental variables.Therefore,to understand the thermal comfort conditions and usage of the environmental controls in naturally ventilated hostel buildings at the higher range of the environmental variables,a thermal comfort field study spread over one year was carried out at the National Institute of Technology,Tiruchirappalli,India,in twenty-seven hostel buildings.This study relies on field observation and thermal comfort responses from 2028 questionnaires collected from the students between September 2019 to August 2020.The analysis revealed a neutral temperature of 29.5℃ and a comfort range from 26.1℃ to 32.8℃,indicating a wide range of ther-mal adaptation than suggested by the National Building Code of India and ASHRAE standard 55.The preferred temperature was 27.8℃,indicating that students preferred a cooler environment.Acceptability with sweating conditions extended the upper limit of thermal acceptability from 31.8℃ to 32.4℃.The use of a mosquito net can increase the probability of opening a window.Results indicated that overall behavioral adjustment could extend the comfort limits.The study results would be helpful to develop guidelines and designs for naturally ventilated hostel buildings in warm and humid climates that will contribute to reducing energy demand.展开更多
文摘Natural ventilation is recognized for improving the thermal comfort of the built environment and indoor air quality.It provides comfortable conditions for building occupants and reduces energy consumption for air-conditioning.Therefore,it is important to study and explore effective means of ventilation to improve the building designs.This study investigates the thermal comfort of a naturally ventilated hostel operational building in the composite climate of Jaipur,India using Computational Fluid Dynamics(CFD)simulation tool‘Cradle scSTREAM’.A 3D building model has been developed to analyze the thermal comfort for different natural ventilation strategies with advanced mesh algorithms which generate fewer mesh elements and maintain good mesh quality.A field study was carried out to collect the actual data and to validate the model which was further used to evaluate the thermal comfort range based on the ASHRAE-55 standard.Several design strategies have been applied to enhance thermal comfort.It was found that an increase in air velocity up to 0.5 m/s was achieved by Cross Ventilation while a drop of 2.0-2.5℃in the air temperature was found using Night Ventilation.It can be stated that cross ventilation increases the air movement while night ventilation gives comparatively higher comfort regarding air temperature and relative humidity.
文摘Thermal comfort is an important factor in hostel buildings when the aim is to maximize the productivity of the students.Due to the extreme weather conditions,achieving thermal comfort in a hostel building in a hot and humid climate is even more difficult.Studies conducted in naturally ventilated hostel buildings in warm-humid climates involved the influence of outdoor air temperature only up to 34.4℃ and have been conducted in a specific season.In contrast,the Tiruchirappalli climate is characterized by a higher range of environmental variables.Therefore,to understand the thermal comfort conditions and usage of the environmental controls in naturally ventilated hostel buildings at the higher range of the environmental variables,a thermal comfort field study spread over one year was carried out at the National Institute of Technology,Tiruchirappalli,India,in twenty-seven hostel buildings.This study relies on field observation and thermal comfort responses from 2028 questionnaires collected from the students between September 2019 to August 2020.The analysis revealed a neutral temperature of 29.5℃ and a comfort range from 26.1℃ to 32.8℃,indicating a wide range of ther-mal adaptation than suggested by the National Building Code of India and ASHRAE standard 55.The preferred temperature was 27.8℃,indicating that students preferred a cooler environment.Acceptability with sweating conditions extended the upper limit of thermal acceptability from 31.8℃ to 32.4℃.The use of a mosquito net can increase the probability of opening a window.Results indicated that overall behavioral adjustment could extend the comfort limits.The study results would be helpful to develop guidelines and designs for naturally ventilated hostel buildings in warm and humid climates that will contribute to reducing energy demand.