期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Product image sentence annotation based on kernel descriptors and tag-rank
1
作者 张红斌 姬东鸿 +2 位作者 尹兰 任亚峰 殷依 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期170-176,共7页
Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summariza... Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines. 展开更多
关键词 product image sentence annotation kerneldescriptors tag-rank word sequence blocks building(WSBB) N-gram word sequences
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部