Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, hig...Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.展开更多
A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and i...A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.展开更多
Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and ...Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.展开更多
文摘Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.
文摘A variety of liquid thermal solar collectors designs used for water heating have been developed by the previous researchers. But the majority of them do not meet the requirements on small weight, easy assembling and installing, versatility, scalability and adaptability of the design, which are particularly important when they are facade integrated. In order to avoid the above mentioned drawbacks of the liquid thermal collectors, the authors propose to apply to them extruded aluminum alloy made heat pipes of originally designed cross-sectional profile with wide fins and longitudinal grooves. Such solar collectors could be a good solution for building facade and roof integration, because they are assembled of several standard and independent, hermetically sealed and light-weight modules, easy mounted and "dry" connected to the main pipeline. At that, their thermal performances are not worse than of the other known ones made of heavier and more expensive copper with higher thermal conductance, or having entire rigid designs. Some variants of the developed solar collectors shaping of the assembled modules for building facade or roof integration are proposed. Variously colored coatings to the absorbers are developed and made of carbon-siliceous nano-composites by means of sol-gel method. Their optical performances were compared with "anodized black". It is stated that colored coatings have a good prospect in thermal SCs (solar collectors) adaptation to building facades decoration, but the works on study and upgrade of their performances should be continued.
基金the National Natural Science Foundation of China(No.52078144)the National Natural Science Foundation of China(No.52108073)the Innovation Research for Postgraduates of Guangzhou University(No.2021GDJC-D15).
文摘Reflective and insulative composite coatings are a new energy-saving material with high solar reflectance and extremely low thermal conductivity for buildings.The optimization and impact of high solar reflectance and low thermal conductivity on the insulating capacity of walls remain uncertain.This work investigates the dynamic thermal performance and energy efficiency of a reflective and insulative composite coating in regions with hot summer and warm winter.A simplified thermal resistance-heat capacitance model of an exterior building wall is established to predict thermal performance.The dynamic temperature and heat flow of the wall are predicted to reduce heat loss through the interior surface of the wall and compared to the conventional coating.The specific impact of the thermal conductivity and solar reflectance of the coating on the heat loss is further investigated to minimize heat loss of the wall.This research shows that the composite coating shows better performance on adjusting outdoor climate change than the other coating.Compared with cement,it reduces the maximum temperature of the exterior surface of the wall by 7.45°C,and the heat loss through the interior surface of the wall by 38%.The heat loss is reduced with the increase of solar reflectance and the reduction of thermal conductivity.The results can provide a useful reference and guidance for the application of reflective and insulative composite coating on building exterior wall to promote their energy-saving use on building envelopes.