Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Sei...Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.展开更多
Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level bet...Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.展开更多
This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stabilit...This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.展开更多
Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated f...Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.展开更多
Base isolation is one of the most promising alternatives among the structure control methods. In recent decades, base isolation has been seriously considered for civil structures, such as buildings and bridges, subjec...Base isolation is one of the most promising alternatives among the structure control methods. In recent decades, base isolation has been seriously considered for civil structures, such as buildings and bridges, subjected to ground motion. The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology (HUST) are introduced. The achievements include project applications, experimental research results and theoretical innovation.展开更多
Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of ste...Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.展开更多
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and se...Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.展开更多
The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not av...The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.展开更多
The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were sy...The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.展开更多
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of su...The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of such structures. In this paper, seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted. The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots. In the analysis, a large number of parametric studies for different earthquake excitations with three different peak ground acceleration (PGA) levels, different natural periods of the building models, and different shear wave velocities in the soil are considered. For the isolation system, laminated rubber bearings (LRBs) as well as high damping rubber bearings (HDRBs) are used. Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions: (1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures; (2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs; (3) although the peak response is affected by the incorporation of soil flexibility, it appears insensitive to the variation of shear wave velocity in the soil; (4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building, indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions, base isolations and shear wave velocities; (5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories, especially for earthquakes with low and moderate PGA levels; and (6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications, especially at the level of the lower stories.展开更多
Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions bet...Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.展开更多
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire...This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.展开更多
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground m...An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.展开更多
The seismic behavior of base isolated structures with friction pendulum slide bearings devices subjected to near fault events characterized by significant vertical ground motion components is investigated. In particul...The seismic behavior of base isolated structures with friction pendulum slide bearings devices subjected to near fault events characterized by significant vertical ground motion components is investigated. In particular, in order to evaluate the effects of vertical components on seismic response, non-linear dynamic analysis, carried out by using several numerical models, have been performed by considering two near-fault seismic events, L’Aquila 2009 and Emilia Romagna 2012. The obtained results show that increasing vertical seismic motion base shear significantly increases while relative displacements increase very little.展开更多
Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set...Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set-back in the upper body of the large chassis structure.In the parts with stiffness mutation,the torsion effect caused by the tower is far greater than that of the chassis itself.In this study,a total of 273 ground motions are collected and then filtered into four types,including the near-field ordinary,near-field pulse,far-field ordinary,and far-field harmonic.An 8-degree(0.2 g)fortified large chassis base-isolated structure is established.Furthermore,ETABS program software is used to conduct nonlinear time history analysis on the isolation and seismic model under bi-directional earthquake ground motions.The comparison results show that the seismic isolation effect of the base-isolated structure under long-period ground motions is worse than that associated with ordinary ground motions when the seismic response reduction rate of the large base floor significantly decreases compared with that of the tower.When the inter-story displacement angle and the displacement of isolation layer of the chassis exceeds the limit of Code for Seismic Design of Buildings(GB 50011-2010),it is recommended to adopt composite seismic isolation technology or add limit devices.Under the condition of long-period ground motions,the base-isolated structure reduces the lateral-torsional coupling effect of the large chassis structure,while the torsion response of large chassis’top layer increases.Under long-period ground motions with the same acceleration peak,the response of the base-isolated structure increases much more than that of the seismic structure and the consideration of this impact is suggested to be added to the Code.展开更多
At present,earthquakes are a serious problem for building.Severe damages and collapses of buildings were caused by earthquakes in different degrees.It is reported that there are more than 68,858 deaths and hundreds of...At present,earthquakes are a serious problem for building.Severe damages and collapses of buildings were caused by earthquakes in different degrees.It is reported that there are more than 68,858 deaths and hundreds of billions RMB losses in the May 12,2008 Great Wenchuan Earthquake[16].So,more attention should be paid to seismic technology.In order to face the challenges of earthquake on building,the seismic retrofitting was put forward,which“is the modification of existing structures to make them more resistant to seismic activity,ground motion,or soil failure due to earthquakes”[2].展开更多
The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)fr...The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)frame buildings,and masonry buildings.The near-field region is known to be tectonically highly active,and the local intensity level is the highest,that is,0.4g peak ground acceleration(PGA)for the design basis earthquake,in the Chinese zonation of seismic ground motion parameters.The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy.The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings.It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement.Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field.However,careful forensic analyses are needed before any conclusive judgment can be made.展开更多
According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by o...According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.展开更多
Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an importan...Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.展开更多
To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted...To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted.Based on the test results and the existing related studies,an efficient simplified model and a corresponding calculation method are verified for estimating the dynamic characteristics of a base-isolated structure with buried footings on a pile foundation with the SSI effect.In this method,the solutions by Veletsos and co-workers for a non-isolated structure with the SSI effect are verified and advanced for a base-isolated structure,and the solutions by Maravas and co-workers for a non-isolated structure on a pile foundation are introduced to consider the effect of the piles.By comparison with the shake table test,this work proves that the simplified method can efficiently estimate the dynamic responses of a base-isolated structure with buried footings on a pile foundation.Using parameter analysis,this work also shows that the dynamic characteristics of a non-isolated structure are quite similar to those of the base-isolated structure when the soil foundation is sufficiently soft,which means that the isolation layer gradually loses its isolation function as the soil foundation softens.展开更多
文摘Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.
基金National Natural Science Foundation of China Under Grant No.50778077 and 50878093
文摘Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.
基金National Natural Science Foundation(NNSF)of China under Grant No.51478132Guangzhou City College Scientific Research Project under Grant No.120163017
文摘This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.
文摘Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.
基金funded by the National Natural Science Foundation of China (Grant No:50925828 and 50778077)
文摘Base isolation is one of the most promising alternatives among the structure control methods. In recent decades, base isolation has been seriously considered for civil structures, such as buildings and bridges, subjected to ground motion. The research achievements and development of seismic base isolation technique for civil structures in Huazhong University of Science and Technology (HUST) are introduced. The achievements include project applications, experimental research results and theoretical innovation.
文摘Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results.
文摘Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.
文摘The objective of this study is to identify system parameters from the recorded response of base isolated buildings,such as USC hospital building,during the 1994 Northridge earthquake.Full state measurements are not available for identification.Additionally,the response is nonlinear due to the yielding of the lead-rubber bearings.Two new approaches are presented in this paper to solve the aforementioned problems.First,a reduced order observer is used to estimate the unmeasured states.Second,a least squares technique with time segments is developed to identify the piece-wise linear system properties.The observer is used to estimate the initial conditions needed for the time segmented identification.A series of equivalent linear system parameters are identified in different time segments.It is shown that the change in system parameters,such as frequencies and damping ratios,due to nonlinear behavior of the lead-rubber bearings,are reliably estimated using the presented technique.It is shown that the response was reduced due to yielding of the lead-rubber bearings and period lengthening.
基金National Key Research and Development Program of China under Grant No.2017YFC0703600 and No.2017YFC0703604。
文摘The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.
文摘The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil. However, it is often customary to idealize the soil as rigid during the analysis of such structures. In this paper, seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted. The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots. In the analysis, a large number of parametric studies for different earthquake excitations with three different peak ground acceleration (PGA) levels, different natural periods of the building models, and different shear wave velocities in the soil are considered. For the isolation system, laminated rubber bearings (LRBs) as well as high damping rubber bearings (HDRBs) are used. Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions: (1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures; (2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs; (3) although the peak response is affected by the incorporation of soil flexibility, it appears insensitive to the variation of shear wave velocity in the soil; (4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building, indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions, base isolations and shear wave velocities; (5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories, especially for earthquakes with low and moderate PGA levels; and (6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications, especially at the level of the lower stories.
文摘Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.
文摘This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.
基金The National Natural Science Foundation of China (No. 50778078)
文摘An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures.
文摘The seismic behavior of base isolated structures with friction pendulum slide bearings devices subjected to near fault events characterized by significant vertical ground motion components is investigated. In particular, in order to evaluate the effects of vertical components on seismic response, non-linear dynamic analysis, carried out by using several numerical models, have been performed by considering two near-fault seismic events, L’Aquila 2009 and Emilia Romagna 2012. The obtained results show that increasing vertical seismic motion base shear significantly increases while relative displacements increase very little.
基金This project is jointly sponsored by Yunnan Youth Earthquake Science Foundation(2020K06)the National Natural Science Foundation of China(51778149)Xiamen University Tan Kah College School-Enterprise Cooperation Foundation(JGH2020034).
文摘Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set-back in the upper body of the large chassis structure.In the parts with stiffness mutation,the torsion effect caused by the tower is far greater than that of the chassis itself.In this study,a total of 273 ground motions are collected and then filtered into four types,including the near-field ordinary,near-field pulse,far-field ordinary,and far-field harmonic.An 8-degree(0.2 g)fortified large chassis base-isolated structure is established.Furthermore,ETABS program software is used to conduct nonlinear time history analysis on the isolation and seismic model under bi-directional earthquake ground motions.The comparison results show that the seismic isolation effect of the base-isolated structure under long-period ground motions is worse than that associated with ordinary ground motions when the seismic response reduction rate of the large base floor significantly decreases compared with that of the tower.When the inter-story displacement angle and the displacement of isolation layer of the chassis exceeds the limit of Code for Seismic Design of Buildings(GB 50011-2010),it is recommended to adopt composite seismic isolation technology or add limit devices.Under the condition of long-period ground motions,the base-isolated structure reduces the lateral-torsional coupling effect of the large chassis structure,while the torsion response of large chassis’top layer increases.Under long-period ground motions with the same acceleration peak,the response of the base-isolated structure increases much more than that of the seismic structure and the consideration of this impact is suggested to be added to the Code.
文摘At present,earthquakes are a serious problem for building.Severe damages and collapses of buildings were caused by earthquakes in different degrees.It is reported that there are more than 68,858 deaths and hundreds of billions RMB losses in the May 12,2008 Great Wenchuan Earthquake[16].So,more attention should be paid to seismic technology.In order to face the challenges of earthquake on building,the seismic retrofitting was put forward,which“is the modification of existing structures to make them more resistant to seismic activity,ground motion,or soil failure due to earthquakes”[2].
基金the Natural Science Foundation of China(52122811).
文摘The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province,China.They include base-isolated buildings,multi-story reinforced concrete(RC)frame buildings,and masonry buildings.The near-field region is known to be tectonically highly active,and the local intensity level is the highest,that is,0.4g peak ground acceleration(PGA)for the design basis earthquake,in the Chinese zonation of seismic ground motion parameters.The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy.The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings.It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement.Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field.However,careful forensic analyses are needed before any conclusive judgment can be made.
基金National Key R&D Program of China under Grant No.2016YFC0401705Science Fund for Creative Research Groups of the National Natural Science Foundation of China Grant No.51621092+3 种基金the National Natural Science Foundation of China Grant No.51579173,No.51379140,No.51309177 and No.51509180the Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology Grant No.2014RA4031the Program of Introducing Talents of Discipline to Universities Grant No.B14012the Tianjin Innovation Team Foundation of Key Research Areas Grant No.2014TDA001
文摘According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.
文摘Due to the shortage of land in cities and population growth,the significance of high rise buildings has risen.Controlling lateral displacement of structures under different loading such as an earthquake is an important issue for designers.One of the best systems is the diagrid method which is built with diagonal elements with no columns for manufacturing tall buildings.In this study,the effect of the distribution of the tuned mass damper(TMD)on the structural responses of diagrid tall buildings was investigated using a new dynamic method.So,a diagrid structural systems with variable height with TMDs was solved as an example of structure.The reason for the selection of the diagrid system was the formation of a stiffness matrix for the diagonal and angular elements.Therefore,the effect of TMDs distribution on the story drift,base shear and structural behaviour were studied.The obtained outcomes showed that the TMDs distribution does not significantly affect on improving the behaviour of the diagrid structural system during an earthquake.Furthermore,the new dynamic scheme represented in this study has good performance for analyzing different systems.Abbreviation:TMD-tuned mass damper;SATMD-semiactive-tuned mass dampers;MDOF-multiple degrees of freedom;m_(i)-mass of ith story of the building;c_(i)-damping coefficient of the ith story of the building;k_(i)-stiffness of ith story of the building;x_(i)-displacement of the ith story of the building;md-mass of damper;c_(d)-damping coefficient of the damper;k_(d)-stiffness of damper;x_(d)-displacement of TMD;M_(i)-generalized mass of the ith normal mode;C_(i)-generalized damping of the ith normal mode;K_(i)-generalized stiffness of the ith normal mode;K_(i)(t)-generalized load of the ith normal mode;Y_(i)(t)-generalized displacement of the ith normal mode;[M]-matrices of mass;[C]-matrices of damping;{P(t)}-consequence external forces;N_(i)(τ)-interpolation functions;[Ai]-mechanical properties of the structure.
基金funded by the National Natural Science Foundation of China(No.51778282)the Science Research Foundations of Nanjing Institute of Technology(CKJA201505,JCYJ201618)
文摘To investigate the effect of soil-pile-structure interaction(SPSI effect)on the dynamic response of a baseisolated structure with buried footings on a pile foundation,certain shake table tests are previously conducted.Based on the test results and the existing related studies,an efficient simplified model and a corresponding calculation method are verified for estimating the dynamic characteristics of a base-isolated structure with buried footings on a pile foundation with the SSI effect.In this method,the solutions by Veletsos and co-workers for a non-isolated structure with the SSI effect are verified and advanced for a base-isolated structure,and the solutions by Maravas and co-workers for a non-isolated structure on a pile foundation are introduced to consider the effect of the piles.By comparison with the shake table test,this work proves that the simplified method can efficiently estimate the dynamic responses of a base-isolated structure with buried footings on a pile foundation.Using parameter analysis,this work also shows that the dynamic characteristics of a non-isolated structure are quite similar to those of the base-isolated structure when the soil foundation is sufficiently soft,which means that the isolation layer gradually loses its isolation function as the soil foundation softens.