With the progress of the times and the leap of science and technology,the application of brick materials and the research on the brick skin in modern architectural design have shown a dual-track development trend of r...With the progress of the times and the leap of science and technology,the application of brick materials and the research on the brick skin in modern architectural design have shown a dual-track development trend of returning to tradition and innovation.Based on the core collection database resources of Web of Science and the CiteSpace visual analysis tool,this paper constructed and analyzed the spatio-temporal map of keyword co-occurrence network,cluster structure,mutation phenomenon,time course and regional distribution map of building brick skin research.The study revealed that in recent years,the research on brick materials has spanned the study of single material properties and extensively involved in the broad world of construction,especially in the integration of green energy-saving technology,the innovation of fine construction technology of brick skin,and the frontier exploration of digital technology in brick masonry,which has shown particularly significant research vitality and development potential.展开更多
[Objective] In order to take full advantage of processing by-product of water chestnut, the microwave extraction method of flavonoids from water chestnut skin dregs was optimized. The extracted flavonoids had a relati...[Objective] In order to take full advantage of processing by-product of water chestnut, the microwave extraction method of flavonoids from water chestnut skin dregs was optimized. The extracted flavonoids had a relatively high yield. [Method] The Box-Behnken design-based response surface method was adopted to optimize the microwave extraction of flavonoids from water chestnut skin dregs, a by-product of water chestnut starch. The mathematical relationships between various influencing factors and flavonoids yield were established. [Result] The optimum extraction conditions of flavonoids from water chestnut skin dregs were as follows: ethanol concentration of 55.4%, solid/liquid ratio of 1:30 g/ml, microwave power of 320 W, microwave time of 3 min and microwave time of 2 times. Under the optimum extraction conditions, the theoretical flavonoids yield was 2.376%. However, the actual flavonoids yield under the optimum extraction conditions was 2.365%. The relative error between actual values and theoretically predicted values was 0.461%. [Conclusion] The results showed the optimized extraction method is reliable, and it can provide a reference for the comprehensive and highly efficient utilization of water chestnut processing wastes.展开更多
In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with d...In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with different degrees,and then these complex curves are used to construct NURBS skinning surface. Somekinds of skills are used to dispose the knot of NURBS curves and surfaces for practicalproblems. Finally, the method is verified by several complex examples.展开更多
Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new method of researching on clothing comfort perception, the skin temperature li...Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new method of researching on clothing comfort perception, the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected. Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.展开更多
The physiological skin surface pH is just below 5. With age the skin surface pH increases up to 6. An increased pH correlates with reduced barrier integrity/cohesion. The present pilot study assesses possible normaliz...The physiological skin surface pH is just below 5. With age the skin surface pH increases up to 6. An increased pH correlates with reduced barrier integrity/cohesion. The present pilot study assesses possible normalization of an increased skin surface pH of the elderly and improvement of barrier function via application of ≈pH 4.0 skin care products. Baseline skin surface pH was determined in elderly (80+ years old;n = 15) compared to middle aged adults (31 - 50 years old;n = 15). The effect of o/w emulsions at pH-values of 3.5, 4.0, 4.5 and 5.5 on the skin surface pH was determined in both groups. Further, the effect of a 4-week treatment with a pH 4.0 skin care product on the skin surface pH, skin hydration and barrier integrity was assessed. Thirteen elderly females were involved in this home-in-use test. Increased baseline skin surface pH of the elderly normalizes to the physiological pH of 4.5 - 5.0 over 7 hours after single application of o/w-emulsions with a given pH of 3.5 or 4.0. A 4 week treatment employing the pH 4.0 skin care product improves the epidermal barrier integrity of the elderly significantly (p = 0.005). Reduction of the increased baseline skin surface pH of the elderly is accompanied by improved epidermal barrier integrity. Skin care products for the elderly have to be adjusted in the pH range of 3.5 to 4.0.展开更多
Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Re...Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.展开更多
Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool ele...Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.展开更多
A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation ar...A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.展开更多
Purpose: The main objective of the study was to evaluate the effect of air gaps of 0 - 5.0 cm between bolus and skin for 1.0 cm Superflab bolus on surface dose (DSurf) and depth of maximum dose (dmax) in solid water a...Purpose: The main objective of the study was to evaluate the effect of air gaps of 0 - 5.0 cm between bolus and skin for 1.0 cm Superflab bolus on surface dose (DSurf) and depth of maximum dose (dmax) in solid water and Rando? phantoms. Methods: In this work, the effects of bolus to surface distance on DSurf and variation in dmax were analyzed in a solid water phantom and in an anthropomorphic Rando? phantom for different field sizes, using Gafchromic? EBT films and farmer chamber. Results: For field sizes of 5 × 5 cm2 the DSurf is significantly affected by increasing air gaps greater than 5 mm. For field sizes larger than 10 × 10 cm2, DSurf is nearly the same for air gaps of 0 - 5.0 cm. For small fields and 6 MV photon beam, dmax increases with increasing air gap, while for 10 MV beam and smaller field sizes (i.e. 5 × 5 and 10 × 10 cm2) the dmax first decreases and then increases with the air gaps. For both 3DCRT and IMRT plans on Rando?, DSurf reduction is more prominent with increasing air gaps. Conclusion: For field sizes larger than 10 × 10 cm2 DSurf is largely unaffected by air gaps. However, smaller air gap results in shallower dmax for both 6 MV and 10 MV photon beams at all fields sizes. Special consideration should be taken to reduce air gaps between bolus and skin for field sizes smaller than 10 × 10 cm2 or when surface contour variations are greater or when the bolus covers small area and at the border of the field.展开更多
EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in m...EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in more than 10 buildings situated in different areas of Hong Kong. Variations were identified in the exhalation rates at different levels in a building, for different covering materials and for the presence of cracks in walls. The radon exhalation rate from the most common concrete walls and covering materials was found to be approximately 13 mBq·m<sup>-2</sup>·s<sup>-1</sup>. This may be the cause of a relatively high indoor radon concentration in Hong Kong.展开更多
Influence of surface topography on the tactile friction of medical compression textiles was studied in this paper. The friction behavior was investigated for three kinds of medical textiles with various structures and...Influence of surface topography on the tactile friction of medical compression textiles was studied in this paper. The friction behavior was investigated for three kinds of medical textiles with various structures and compositions by using a textile friction analyzer under dry condition. In order to simulate the contacts of textiles/human finger, a mechanical skin model with similar texture to the skin and applied normal load oflN were selected. Meanwhile, the 3D surface topography of textiles was measured using a digital microscope. The topographical data were analyzed concerning height distribution and material ratio, and the real contact area was estimated as a function of penetration depth. Results showed that the investigated textiles revealed a significant variation on the friction coefficients, which were ( 0.41 ± 0.01 ) ( polyamide, jersey 2 × 2 ), (0.56 ± 0. 01) (cotton, jersey 2×2) and (0. 47 ± 0. 01) (polyamide, jersey 1 × 1 ), respectively. The textile with higher friction coefficient was found to own a relative compact and homogenous surface and larger contact area, vice versa.展开更多
The Monte Carlo method and the region method are combined in this paper,where a high-rise building in Harbin were taken for example to investigate the infrared radiation field of building surface.The calculation model...The Monte Carlo method and the region method are combined in this paper,where a high-rise building in Harbin were taken for example to investigate the infrared radiation field of building surface.The calculation models of temperature field and radiation transfer coefficient on the exterior surface were established.Through the self-built Bidirectional Reflectance Distribution Function(BRDF)experimental device,the BRDFs of moorstone,aluminum plate,coated glass and Ethylene-Propylene-Diene Monomer(EPDM)on the surfaces under dry and wet conditions were measured at different incidence angles with respective laser wavelengths of0.6328μm and 1.34μm.For the two wavelengths,the reflection ratios of the material surfaces under dry and wet conditions were calculated respectively.Based on some proper simplifications of the background condition,the simulation analysis of the radiation field of building surface was carried out according to the wetness theory and the measured data.Taking the situation at 9:00 a.m.on the day of summer solstice as an example,this paper made relevant quantitative calculation for the solar radiation,the self radiation of the surface units,the radiating projection between the surface units,and the general infrared radiation of the building surface.Comparisons on infrared radiance field of the building surface were obtained under cloud-free sunshine conditions and rainfall conditions respectively,and the rationality of the results was discussed.展开更多
Surface skinning is a widely used algorithm in CAD modeling which permits designer to pass surface through several section curves, thus providing modeling process with powerful ability to describe complex shapes and t...Surface skinning is a widely used algorithm in CAD modeling which permits designer to pass surface through several section curves, thus providing modeling process with powerful ability to describe complex shapes and transform the 2D design intention into 3D space. This paper contributes in the combination of T-Spline technology and surface skinning modeling by introducing a new algorithm for local shape preservation T-Spline surface skinning. The examples given in the paper show that this algorithm is effective.展开更多
Contamination by accidental cutaneous contact with the commercial products and the air pol-hutants raised a considerable health and safety issue.This study aimed to trace the dynamics of the 20 nm gold nanopartide(GNP...Contamination by accidental cutaneous contact with the commercial products and the air pol-hutants raised a considerable health and safety issue.This study aimed to trace the dynamics of the 20 nm gold nanopartide(GNP)penetration and accumulation in rat skin tissues using a surface-enhanced Raman scattering(SERS)techmique.After the topical application of GNPs on rat skin surface,the SERS spectra were recorded for every 15 pum to an overall depth of 75 pum from skin surface for 150 min.The processes of GNP penetration in rat skin were accompanied by aggregation of GNPs,which affected SERS spectra.The results revealed that 20 nm GNPs can penetrate through stratum corneum layer,viable epidermis layer,and then into dermis layer.This study demonstrated for the first time the potential of SERS spectroscopy to monitor the penetration and accumulation of GNPs in rat skin.展开更多
The prevalence of surface contaminants,such as potentially harmful bacteria,within building environments in the State of Kuwait is not known.To the authors’knowledge,this article is the first of such a report.A total...The prevalence of surface contaminants,such as potentially harmful bacteria,within building environments in the State of Kuwait is not known.To the authors’knowledge,this article is the first of such a report.A total of 342 stool samples were collected from 46 secondary schools to evaluate indoor occurrences of E.coli bacteria within selected lavatory surfaces.After microbiological testing,the results for the spread of the E.coli bacteria were categorized by total count,sampling location dependency,contamination level comparison between genders,and lavatory fixtures(i.e.seat and squat toilets).The results revealed that 7 schools have a bacterial contamination problem,there is cross-contamination between surfaces in the lavatory stalls,the boys’lavatories were less sanitary than the girls’,and that the squat-style toilets are more contaminated than the seat-style.The results suggest that there is significant risk of spread of bacterial infection among students via contaminated hands and surfaces in the lavatory area in some schools.Thus,this study emphasizes the need to improve environmental hygiene and enhanced sanitation in these schools.In addition,conclusions can be drawn as to the effectiveness of the janitorial staff employed by the schools and the efficacy of the cleaning regime used in the lavatories.Furthermore,based on the findings,there are architectural design consequences as squat-style toilets might be excluded in lavatories designed for schools to be constructed in the future.展开更多
The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturin...The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.展开更多
The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional method...The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.展开更多
文摘With the progress of the times and the leap of science and technology,the application of brick materials and the research on the brick skin in modern architectural design have shown a dual-track development trend of returning to tradition and innovation.Based on the core collection database resources of Web of Science and the CiteSpace visual analysis tool,this paper constructed and analyzed the spatio-temporal map of keyword co-occurrence network,cluster structure,mutation phenomenon,time course and regional distribution map of building brick skin research.The study revealed that in recent years,the research on brick materials has spanned the study of single material properties and extensively involved in the broad world of construction,especially in the integration of green energy-saving technology,the innovation of fine construction technology of brick skin,and the frontier exploration of digital technology in brick masonry,which has shown particularly significant research vitality and development potential.
文摘[Objective] In order to take full advantage of processing by-product of water chestnut, the microwave extraction method of flavonoids from water chestnut skin dregs was optimized. The extracted flavonoids had a relatively high yield. [Method] The Box-Behnken design-based response surface method was adopted to optimize the microwave extraction of flavonoids from water chestnut skin dregs, a by-product of water chestnut starch. The mathematical relationships between various influencing factors and flavonoids yield were established. [Result] The optimum extraction conditions of flavonoids from water chestnut skin dregs were as follows: ethanol concentration of 55.4%, solid/liquid ratio of 1:30 g/ml, microwave power of 320 W, microwave time of 3 min and microwave time of 2 times. Under the optimum extraction conditions, the theoretical flavonoids yield was 2.376%. However, the actual flavonoids yield under the optimum extraction conditions was 2.365%. The relative error between actual values and theoretically predicted values was 0.461%. [Conclusion] The results showed the optimized extraction method is reliable, and it can provide a reference for the comprehensive and highly efficient utilization of water chestnut processing wastes.
文摘In order to design the production with complex external shapes, a newmethod is put forward using non-uniform rational B-spline(NURBS)curves to unifythe description of complex curves composed of several segments with different degrees,and then these complex curves are used to construct NURBS skinning surface. Somekinds of skills are used to dispose the knot of NURBS curves and surfaces for practicalproblems. Finally, the method is verified by several complex examples.
基金Supported by the national education ministry key research project 02107
文摘Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design. By a new method of researching on clothing comfort perception, the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected. Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.
文摘The physiological skin surface pH is just below 5. With age the skin surface pH increases up to 6. An increased pH correlates with reduced barrier integrity/cohesion. The present pilot study assesses possible normalization of an increased skin surface pH of the elderly and improvement of barrier function via application of ≈pH 4.0 skin care products. Baseline skin surface pH was determined in elderly (80+ years old;n = 15) compared to middle aged adults (31 - 50 years old;n = 15). The effect of o/w emulsions at pH-values of 3.5, 4.0, 4.5 and 5.5 on the skin surface pH was determined in both groups. Further, the effect of a 4-week treatment with a pH 4.0 skin care product on the skin surface pH, skin hydration and barrier integrity was assessed. Thirteen elderly females were involved in this home-in-use test. Increased baseline skin surface pH of the elderly normalizes to the physiological pH of 4.5 - 5.0 over 7 hours after single application of o/w-emulsions with a given pH of 3.5 or 4.0. A 4 week treatment employing the pH 4.0 skin care product improves the epidermal barrier integrity of the elderly significantly (p = 0.005). Reduction of the increased baseline skin surface pH of the elderly is accompanied by improved epidermal barrier integrity. Skin care products for the elderly have to be adjusted in the pH range of 3.5 to 4.0.
基金supported by the German Research Foundation DFG within the Cluster of Excellence "Integrative Production Technology for High-Wage Countries
文摘Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.
基金Supported by the National Natural Science Foundation of China (50635040) and the National Science Foundation of USA(CMMI-0728294 and CMMI- 0928873)
文摘Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.
基金Supported by the national education ministry key research project 02107
文摘A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.
文摘Purpose: The main objective of the study was to evaluate the effect of air gaps of 0 - 5.0 cm between bolus and skin for 1.0 cm Superflab bolus on surface dose (DSurf) and depth of maximum dose (dmax) in solid water and Rando? phantoms. Methods: In this work, the effects of bolus to surface distance on DSurf and variation in dmax were analyzed in a solid water phantom and in an anthropomorphic Rando? phantom for different field sizes, using Gafchromic? EBT films and farmer chamber. Results: For field sizes of 5 × 5 cm2 the DSurf is significantly affected by increasing air gaps greater than 5 mm. For field sizes larger than 10 × 10 cm2, DSurf is nearly the same for air gaps of 0 - 5.0 cm. For small fields and 6 MV photon beam, dmax increases with increasing air gap, while for 10 MV beam and smaller field sizes (i.e. 5 × 5 and 10 × 10 cm2) the dmax first decreases and then increases with the air gaps. For both 3DCRT and IMRT plans on Rando?, DSurf reduction is more prominent with increasing air gaps. Conclusion: For field sizes larger than 10 × 10 cm2 DSurf is largely unaffected by air gaps. However, smaller air gap results in shallower dmax for both 6 MV and 10 MV photon beams at all fields sizes. Special consideration should be taken to reduce air gaps between bolus and skin for field sizes smaller than 10 × 10 cm2 or when surface contour variations are greater or when the bolus covers small area and at the border of the field.
文摘EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in more than 10 buildings situated in different areas of Hong Kong. Variations were identified in the exhalation rates at different levels in a building, for different covering materials and for the presence of cracks in walls. The radon exhalation rate from the most common concrete walls and covering materials was found to be approximately 13 mBq·m<sup>-2</sup>·s<sup>-1</sup>. This may be the cause of a relatively high indoor radon concentration in Hong Kong.
基金National Natural Science Foundations of China,Natural Science Foundation of Shanghai,China,the Fundamental Research Funds for the Central Universities,China
文摘Influence of surface topography on the tactile friction of medical compression textiles was studied in this paper. The friction behavior was investigated for three kinds of medical textiles with various structures and compositions by using a textile friction analyzer under dry condition. In order to simulate the contacts of textiles/human finger, a mechanical skin model with similar texture to the skin and applied normal load oflN were selected. Meanwhile, the 3D surface topography of textiles was measured using a digital microscope. The topographical data were analyzed concerning height distribution and material ratio, and the real contact area was estimated as a function of penetration depth. Results showed that the investigated textiles revealed a significant variation on the friction coefficients, which were ( 0.41 ± 0.01 ) ( polyamide, jersey 2 × 2 ), (0.56 ± 0. 01) (cotton, jersey 2×2) and (0. 47 ± 0. 01) (polyamide, jersey 1 × 1 ), respectively. The textile with higher friction coefficient was found to own a relative compact and homogenous surface and larger contact area, vice versa.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276050)
文摘The Monte Carlo method and the region method are combined in this paper,where a high-rise building in Harbin were taken for example to investigate the infrared radiation field of building surface.The calculation models of temperature field and radiation transfer coefficient on the exterior surface were established.Through the self-built Bidirectional Reflectance Distribution Function(BRDF)experimental device,the BRDFs of moorstone,aluminum plate,coated glass and Ethylene-Propylene-Diene Monomer(EPDM)on the surfaces under dry and wet conditions were measured at different incidence angles with respective laser wavelengths of0.6328μm and 1.34μm.For the two wavelengths,the reflection ratios of the material surfaces under dry and wet conditions were calculated respectively.Based on some proper simplifications of the background condition,the simulation analysis of the radiation field of building surface was carried out according to the wetness theory and the measured data.Taking the situation at 9:00 a.m.on the day of summer solstice as an example,this paper made relevant quantitative calculation for the solar radiation,the self radiation of the surface units,the radiating projection between the surface units,and the general infrared radiation of the building surface.Comparisons on infrared radiance field of the building surface were obtained under cloud-free sunshine conditions and rainfall conditions respectively,and the rationality of the results was discussed.
文摘Surface skinning is a widely used algorithm in CAD modeling which permits designer to pass surface through several section curves, thus providing modeling process with powerful ability to describe complex shapes and transform the 2D design intention into 3D space. This paper contributes in the combination of T-Spline technology and surface skinning modeling by introducing a new algorithm for local shape preservation T-Spline surface skinning. The examples given in the paper show that this algorithm is effective.
基金supported by the National Natural Science Foundation of China(No.61275187,No.61378089,and No.31300691).
文摘Contamination by accidental cutaneous contact with the commercial products and the air pol-hutants raised a considerable health and safety issue.This study aimed to trace the dynamics of the 20 nm gold nanopartide(GNP)penetration and accumulation in rat skin tissues using a surface-enhanced Raman scattering(SERS)techmique.After the topical application of GNPs on rat skin surface,the SERS spectra were recorded for every 15 pum to an overall depth of 75 pum from skin surface for 150 min.The processes of GNP penetration in rat skin were accompanied by aggregation of GNPs,which affected SERS spectra.The results revealed that 20 nm GNPs can penetrate through stratum corneum layer,viable epidermis layer,and then into dermis layer.This study demonstrated for the first time the potential of SERS spectroscopy to monitor the penetration and accumulation of GNPs in rat skin.
文摘The prevalence of surface contaminants,such as potentially harmful bacteria,within building environments in the State of Kuwait is not known.To the authors’knowledge,this article is the first of such a report.A total of 342 stool samples were collected from 46 secondary schools to evaluate indoor occurrences of E.coli bacteria within selected lavatory surfaces.After microbiological testing,the results for the spread of the E.coli bacteria were categorized by total count,sampling location dependency,contamination level comparison between genders,and lavatory fixtures(i.e.seat and squat toilets).The results revealed that 7 schools have a bacterial contamination problem,there is cross-contamination between surfaces in the lavatory stalls,the boys’lavatories were less sanitary than the girls’,and that the squat-style toilets are more contaminated than the seat-style.The results suggest that there is significant risk of spread of bacterial infection among students via contaminated hands and surfaces in the lavatory area in some schools.Thus,this study emphasizes the need to improve environmental hygiene and enhanced sanitation in these schools.In addition,conclusions can be drawn as to the effectiveness of the janitorial staff employed by the schools and the efficacy of the cleaning regime used in the lavatories.Furthermore,based on the findings,there are architectural design consequences as squat-style toilets might be excluded in lavatories designed for schools to be constructed in the future.
文摘The use of three-dimensional maps is more effective than two-dimensional maps in representing the Earth’s surface. However, the traditional methods used to create digital surface models are not efficient for capturing the details of Earth’s features. This is because they represent only three-dimensional objects in a single texture and do not provide a realistic representation of the real world. Additionally, there is a growing demand for up-to-date and accurate geo-information, particularly in urban areas. To address this challenge, a new technique is proposed in this study that involves integrating remote sensing, Geographic Information System, and Architecture Environment software to generate a highly-detailed three-dimensional model. The method described in this study includes several steps such as acquiring high-resolution satellite imagery, gathering ground truth data, performing radiometric and geometric corrections during image preprocessing, producing a 2D map of the region of interest, constructing a digital surface model by extending the building outlines, and transforming the model into multi-patch layers to create a 3D model for each object individually. The research findings indicate that the digital surface model obtained with comprehensive information is suitable for different purposes, such as environmental research, urban development and expansion planning, and shape recognition tasks.
文摘The growing demand for current and precise geographic information that pertains to urban areas has given rise to a significant interest in digital surface models that exhibit a high level of detail. Traditional methods for creating digital surface models are insufficient to reflect the details of earth’s features. These models only represent three-dimensional objects in a single texture and fail to offer a realistic depiction of the real world. Furthermore, the need for current and precise geographic information regarding urban areas has been increasing significantly. This study proposes a new technique to address this problem, which involves integrating remote sensing, Geographic Information Systems (GIS), and Architecture Environment software environments to generate a detailed three-dimensional model. The processing of this study starts with: 1) Downloading high-resolution satellite imagery; 2) Collecting ground truth datasets from fieldwork; 3) Imaging nose removing; 4) Generating a Two-dimensional Model to create a digital surface model in GIS using the extracted building outlines; 5) Converting the model into multi-patch layers to construct a 3D model for each object separately. The results show that the 3D model obtained through this method is highly detailed and effective for various applications, including environmental studies, urban development, expansion planning, and shape understanding tasks.