The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t...Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.展开更多
Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwa...Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.展开更多
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi...Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u...Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.展开更多
Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered f...Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered from unaffected fellow eyes. Methods: The examined patients were classified into 2 groups: group 1—eyes with established retinal vein occlusion (n = 29) and group 2—unaffected fellow eyes of patients with retinal vein occlusion (n = 24). The scanning protocol “Angiography 3 × 3 mm” of Zeiss Cirrus HD-OCT 6000, AngioPlex Metrix was used to evaluate the retinal superficial capillary plexus. The analyzed parameters were vascular density and perfusion density, as well as the area, perimeter, and circularity of the foveolar avascular zone (FAZ). Results: The comparative analysis of FAZ parameters at the superficial capillary plexus (SCP) between group 1 (eyes with retinal vein occlusion) and group 2 (unaffected fellow eyes) showed significant results for the three parameters, respectively area (p = 0.003), perimeter (p ≤ 0.001), and circularity (p = 0.011) of FAZ. The comparative analysis of the vascular network at SCP in patients with diagnosed retinal vein occlusion and unaffected fellow eyes showed significant results for vascular density (VD) in the central (p = 0.038) and inner (p ≤ 0.001) zones as well as total VD (p ≤ 0.001) were statistically significant. Moreover, the results obtained in the study of vascular perfusion (VP) indicated significant results in the inner zone (p ≤ 0.001) and total VP (p = 0.001). Vascular perfusion in the central zone (p = 0.116) was the only parameter not to meet significant results. Conclusion: The current study observed a significant enlargement of the FAZ and loss of its circularity, along with a reduction in vascular network parameters at the superficial retinal capillary plexus level.展开更多
BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma...BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma(ESCC).Japan Esophageal Society(JES)classification is the most widely used classification.Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor:tortuosity,dilatation,irregular caliber,and different shapes.However,the pathological characteristics of IPCLs have not been thoroughly investigated,especially the microvascular structures corresponding to the deepest parts of the lesions'infiltration.AIM To investigate differences in pathological microvascular structures of ESCC,which correspond to the deepest parts of the lesions'infiltration.METHODS Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023.Patients first underwent magnified endoscopic examination,followed by endoscopic submucosal dissection or surgical treatment.Pathological images were scanned using a threedimensional slice scanner,and the pathological structural differences in different types,according to the JES classification,were analyzed using nonparametric tests and t-tests.RESULTS The 35 lesions were divided into four groups according to the JES classification:A,B1,B2,and B3.Statistical analyses revealed significant differences(aP<0.05)in the short and long calibers,area,location,and density between types A and B.Notably,there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3(P>0.05).However,significant differences in the short calibers,long calibers,and area of IPCL were observed between types B1 and B3(aP<0.05);no significant differences were found in the density or location(P>0.05).CONCLUSION Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy,especially between the types A and B.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It ...Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It has been shown that a significant decrease in adsorption was obtained and eletroosmotic flow was the diminished in the pH range 3-5. However with higher pH values, appreciable peak deformation and decreases in the resolving power were observed. Under pH 5, the epoxy polymer coating was shown to be quite stable and exhibited reproducible separations from run-to-run and day-to-day over a period of time.展开更多
Capillary electrochromatography(CEC)plays a significant role in chiral separation via the double separation principle,partition coefficient difference between the two phases,and electroosmotic flow-driven separation.G...Capillary electrochromatography(CEC)plays a significant role in chiral separation via the double separation principle,partition coefficient difference between the two phases,and electroosmotic flow-driven separation.Given the distinct properties of the inner wall stationary phase(SP),the separation ability of each SP differs from one another.Particularly,it provides large room for promising applications of open tubular capillary electrochromatography(OT-CEC).We divided the OT-CEC SPs developed over the past four years into six types:ionic liquids,nanoparticle materials,microporous materials,biomaterials,non-nanopolymers,and others,to mainly introduce their characteristics in chiral drug separation.There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP.Additionally,we discuss their applications in metabolomics,food,cosmetics,environment,and biology as analytes in addition to chiral drugs.OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis(CE)combined with other instruments in recent years,such as CE with mass spectrometry(CE/MS)and CE with ultraviolet light detector(CE/UV).展开更多
In certain exceptional cases,capillary samples must be used to measure X-ray absorption spectra(XAS).However,the inho-mogeneous thickness of capillary samples causes XAS distortion.This study discusses the distortion ...In certain exceptional cases,capillary samples must be used to measure X-ray absorption spectra(XAS).However,the inho-mogeneous thickness of capillary samples causes XAS distortion.This study discusses the distortion and correction of the XAS curve caused by the inhomogeneous thickness of capillary samples.The relationship between the distorted XAS curveμ′d_(eq)(measured values)and the real absorption coefficientμ_(s)d_(eq)(true values)of the sample was established.The distortion was slight and negligible when the vertical size(2h)of the X-ray beam spot was smaller than 60%of the capillary tube’s inner diameter(2R_(in)).When h/R_(in)>1,X-ray leakage is inevitable and should be avoided during measurement.Partial X-ray leakage caused by an X-ray beam spot size larger than the inner diameter of the capillary tube leads to serious compressed distortion of the XAS curve.When h/R_(in)<1,the distorted XAS data were well corrected.Possible errors and their influence on the corrected XAS are also discussed.Simulations and corrections for distortions verify the feasibility and effectiveness of the corrected method.展开更多
Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary ...Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate(VBS)with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate(AHM)and 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAT).The preparation conditions of the monolith were optimized.The morphology and formation of the poly(VBS-co-TAT-co-AHM)monolith were confirmed by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FT-IR).The separation perfor-mances of the monolith were evaluated systematically.It should be noted that the incorporation of VBS functional monomer can provideπ-πinteractions,hydrophilic interactions,and ion-exchange in-teractions.Hence,the prepared poly(VBS-co-TAT-co-AHM)monolith can achieve efficient separation of thiourea compounds,benzene series,phenol compounds,aniline compounds and sulfonamides in RPLC or HILIC separation mode.The largest theoretical plate number for N,N0-dimethylthiourea reached 1.7×10^(5)plates/m.In addition,the poly(VBS-co-TAT-co-AHM)monolithic column showed excellent reproducibility and stability.This novel monolithic column has great application value and potential in capillary electrochromatography(CEC).展开更多
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele...The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics.展开更多
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st...To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries.展开更多
Objective:Cardiopulmonary resuscitation(CPR)after cardiac arrest(CA)is one of the main causes of capillary leakage syndrome(CLS).This study aimed to establish a stable CLS model following the CA and cardiopulmonary re...Objective:Cardiopulmonary resuscitation(CPR)after cardiac arrest(CA)is one of the main causes of capillary leakage syndrome(CLS).This study aimed to establish a stable CLS model following the CA and cardiopulmonary resuscitation(CA-CPR)model in Sprague-Dawley(SD)rats.Methods:We conducted a prospective,randomized,animal model study.All adult male SD rats were randomly divided into a normal group(group N),a sham operation group(group S),and a cardiopulmonary resuscitation group(group T).The SD rats of the three groups were all inserted with 24-G needles through their left femoral arteries and right femoral veins.In group S and group T,the endotracheal tube was intubated.In group T,CA induced by asphyxia(AACA)was caused by vecuronium bromide with the endotracheal tube obstructed for 8 min,and the rats were resuscitated with manual chest compression and mechanical ventilation.Preresuscitation and postresuscitation measurements,including basic vital signs(BVS),blood gas analysis(BG),routine complete blood count(CBC),wet-to-dry ratio of tissues(W/D),and the HE staining results after 6 h were evaluated.Results:In group T,the success rate of the CA-CPR model was 60%(18/30),and CLS occurred in 26.6%(8/30)of the rats.There were no significant differences in the baseline characteristics,including BVS,BG,and CBC,among the three groups(P>0.05).Compared with pre-asphyxia,there were significant differences in BVS,CBC,and BG,including temperature,oxygen saturation(SpO_(2)),mean arterial pressure(MAP),central venous pressure(CVP),white blood cell count(WBC),hemoglobin,hematocrit,pH,pCO_(2),pO_(2),SO_(2),lactate(Lac),base excess(BE),and Na+(P<0.05)after the return of spontaneous circulation(ROSC)in group T.At 6 h after ROSC in group T and at 6 h after surgery in groups N and S,there were significant differences in temperature,heart rate(HR),respiratory rate(RR),SpO_(2),MAP,CVP,WBC,pH,pCO_(2),Na+,and K+among the three groups(P<0.05).Compared with the other two groups,the rats in group T showed a significantly increased W/D weight ratio(P<0.05).The HE-stained sections showed consistent severe lesions in the lung,small intestine,and brain tissues of the rats at 6 h after ROSC following AACA.Conclusion:The CA-CPR model in SD rats induced by asphyxia could reproduce CLS with good stability and reproducibility.展开更多
We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recentl...We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recently(Z.Zheng,Journal of Fluid Mechanics,950,A17,2022).Based on the assumption of vertical gravitational-capillary equilibrium,the saturation distribution and profile shape of the invading fluid can be obtained by solving a nonlinear integral-differential equation.The capillary pressure curves p_(c)(s)can then be constructed by systematically varying the injection rate.Together with the relative permeability curves k_(rn)(s)that are already obtained.One can now provide quick estimates on the overall behaviours of interfacial and unsaturated flows in vertically-heterogeneous porous layers.展开更多
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金financially supported by the Industrial Technology Innovation Program of IMAST(No.2023JSYD 01003)the National Natural Science Foundation of China(Nos.52104292 and U2341209)。
文摘Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.
文摘Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes.Moreover,its role in shallow waters is expected to be considerable.Traditionally,the study of groundwater flow has centered on unsaturated-saturated zones,often overlooking the impact of the capillary fringe.In this study,we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution.Our novel approach employs the potential form of the Richards equation,facilitating the determination of boundaries,pressures,and velocities across different ground surface zones.We utilized a two-dimensional Freefem++finite element model to compute the stationary solution.The validation of the model was conducted using experimental data.We employed the OFAT(One_Factor-At-Time)method to identify the most sensitive soil parameters and understand how changes in these parameters may affect the behavior and water dynamics of the capillary fringe.The results emphasize the role of hydraulic conductivity as a key parameter influencing capillary fringe shape and dynamics.Velocity values within the capillary fringe suggest the prevalence of horizontal flow.By variation of the water table level and the incoming flow q0,we have shown the correlation between water table elevation and the upper limit of the capillary fringe.
基金financially supported by the General Program Grant from the National Natural Science Foundation of China(52274051 and 52174045)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521063)。
文摘Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2021QB055,ZR2023MB017,ZR2022JQ10)the National Natural Science Foundation of China(21901146,220781792,22274083)。
文摘Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.
文摘Purpose: To evaluate optical coherence tomography angiography (OCT-A) data obtained from the superficial retinal capillary plexus of patients with retinal vein occlusion and comparative analysis with data registered from unaffected fellow eyes. Methods: The examined patients were classified into 2 groups: group 1—eyes with established retinal vein occlusion (n = 29) and group 2—unaffected fellow eyes of patients with retinal vein occlusion (n = 24). The scanning protocol “Angiography 3 × 3 mm” of Zeiss Cirrus HD-OCT 6000, AngioPlex Metrix was used to evaluate the retinal superficial capillary plexus. The analyzed parameters were vascular density and perfusion density, as well as the area, perimeter, and circularity of the foveolar avascular zone (FAZ). Results: The comparative analysis of FAZ parameters at the superficial capillary plexus (SCP) between group 1 (eyes with retinal vein occlusion) and group 2 (unaffected fellow eyes) showed significant results for the three parameters, respectively area (p = 0.003), perimeter (p ≤ 0.001), and circularity (p = 0.011) of FAZ. The comparative analysis of the vascular network at SCP in patients with diagnosed retinal vein occlusion and unaffected fellow eyes showed significant results for vascular density (VD) in the central (p = 0.038) and inner (p ≤ 0.001) zones as well as total VD (p ≤ 0.001) were statistically significant. Moreover, the results obtained in the study of vascular perfusion (VP) indicated significant results in the inner zone (p ≤ 0.001) and total VP (p = 0.001). Vascular perfusion in the central zone (p = 0.116) was the only parameter not to meet significant results. Conclusion: The current study observed a significant enlargement of the FAZ and loss of its circularity, along with a reduction in vascular network parameters at the superficial retinal capillary plexus level.
基金Supported by Beijing Science and Technology Development Program(Medical and Pharmaceutical Science Project),No.7232200.
文摘BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma(ESCC).Japan Esophageal Society(JES)classification is the most widely used classification.Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor:tortuosity,dilatation,irregular caliber,and different shapes.However,the pathological characteristics of IPCLs have not been thoroughly investigated,especially the microvascular structures corresponding to the deepest parts of the lesions'infiltration.AIM To investigate differences in pathological microvascular structures of ESCC,which correspond to the deepest parts of the lesions'infiltration.METHODS Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023.Patients first underwent magnified endoscopic examination,followed by endoscopic submucosal dissection or surgical treatment.Pathological images were scanned using a threedimensional slice scanner,and the pathological structural differences in different types,according to the JES classification,were analyzed using nonparametric tests and t-tests.RESULTS The 35 lesions were divided into four groups according to the JES classification:A,B1,B2,and B3.Statistical analyses revealed significant differences(aP<0.05)in the short and long calibers,area,location,and density between types A and B.Notably,there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3(P>0.05).However,significant differences in the short calibers,long calibers,and area of IPCL were observed between types B1 and B3(aP<0.05);no significant differences were found in the density or location(P>0.05).CONCLUSION Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy,especially between the types A and B.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
文摘Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It has been shown that a significant decrease in adsorption was obtained and eletroosmotic flow was the diminished in the pH range 3-5. However with higher pH values, appreciable peak deformation and decreases in the resolving power were observed. Under pH 5, the epoxy polymer coating was shown to be quite stable and exhibited reproducible separations from run-to-run and day-to-day over a period of time.
基金This study was funded by the Project of National Natural Science Foundation of China(Grant No.:82003705)the Shanghai Science and Technology Innovation Foundation(Grant Nos.:23010500200 and 23ZR1422700).
文摘Capillary electrochromatography(CEC)plays a significant role in chiral separation via the double separation principle,partition coefficient difference between the two phases,and electroosmotic flow-driven separation.Given the distinct properties of the inner wall stationary phase(SP),the separation ability of each SP differs from one another.Particularly,it provides large room for promising applications of open tubular capillary electrochromatography(OT-CEC).We divided the OT-CEC SPs developed over the past four years into six types:ionic liquids,nanoparticle materials,microporous materials,biomaterials,non-nanopolymers,and others,to mainly introduce their characteristics in chiral drug separation.There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP.Additionally,we discuss their applications in metabolomics,food,cosmetics,environment,and biology as analytes in addition to chiral drugs.OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis(CE)combined with other instruments in recent years,such as CE with mass spectrometry(CE/MS)and CE with ultraviolet light detector(CE/UV).
基金the National Key R&D Program of China(Nos.2022YFA1603802 and 2017YFA0403000)1W2B and 4B9A at the Beijing Synchrotron Radiation Facility.
文摘In certain exceptional cases,capillary samples must be used to measure X-ray absorption spectra(XAS).However,the inho-mogeneous thickness of capillary samples causes XAS distortion.This study discusses the distortion and correction of the XAS curve caused by the inhomogeneous thickness of capillary samples.The relationship between the distorted XAS curveμ′d_(eq)(measured values)and the real absorption coefficientμ_(s)d_(eq)(true values)of the sample was established.The distortion was slight and negligible when the vertical size(2h)of the X-ray beam spot was smaller than 60%of the capillary tube’s inner diameter(2R_(in)).When h/R_(in)>1,X-ray leakage is inevitable and should be avoided during measurement.Partial X-ray leakage caused by an X-ray beam spot size larger than the inner diameter of the capillary tube leads to serious compressed distortion of the XAS curve.When h/R_(in)<1,the distorted XAS data were well corrected.Possible errors and their influence on the corrected XAS are also discussed.Simulations and corrections for distortions verify the feasibility and effectiveness of the corrected method.
基金the National Natural Science Foundation of China(Grant Nos.:82273885,82073808 and 81872828).
文摘Here,a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM)with reversed-phase/hydrophilic interaction liquid chromatography(RPLC/HILIC)bifunctional separation mode was success-fully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate(VBS)with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate(AHM)and 1,3,5-triacryloylhexahydro-1,3,5-triazine(TAT).The preparation conditions of the monolith were optimized.The morphology and formation of the poly(VBS-co-TAT-co-AHM)monolith were confirmed by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FT-IR).The separation perfor-mances of the monolith were evaluated systematically.It should be noted that the incorporation of VBS functional monomer can provideπ-πinteractions,hydrophilic interactions,and ion-exchange in-teractions.Hence,the prepared poly(VBS-co-TAT-co-AHM)monolith can achieve efficient separation of thiourea compounds,benzene series,phenol compounds,aniline compounds and sulfonamides in RPLC or HILIC separation mode.The largest theoretical plate number for N,N0-dimethylthiourea reached 1.7×10^(5)plates/m.In addition,the poly(VBS-co-TAT-co-AHM)monolithic column showed excellent reproducibility and stability.This novel monolithic column has great application value and potential in capillary electrochromatography(CEC).
基金financial support from the National Natural Science Foundation of China (NSFC,21875155,22032004)the support of the National Key Research and Development Program of China (2021YFA1201502)the support of the Nanqiang Young Top-notch Talent Fellowship in Xiamen University。
文摘The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics.
基金supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A1058793 and 2021R1A3B1068920)supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018M3D1A1058744)the Yonsei Signature Research Cluster Program of 2021 (2021-22-0002)。
文摘To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries.
文摘Objective:Cardiopulmonary resuscitation(CPR)after cardiac arrest(CA)is one of the main causes of capillary leakage syndrome(CLS).This study aimed to establish a stable CLS model following the CA and cardiopulmonary resuscitation(CA-CPR)model in Sprague-Dawley(SD)rats.Methods:We conducted a prospective,randomized,animal model study.All adult male SD rats were randomly divided into a normal group(group N),a sham operation group(group S),and a cardiopulmonary resuscitation group(group T).The SD rats of the three groups were all inserted with 24-G needles through their left femoral arteries and right femoral veins.In group S and group T,the endotracheal tube was intubated.In group T,CA induced by asphyxia(AACA)was caused by vecuronium bromide with the endotracheal tube obstructed for 8 min,and the rats were resuscitated with manual chest compression and mechanical ventilation.Preresuscitation and postresuscitation measurements,including basic vital signs(BVS),blood gas analysis(BG),routine complete blood count(CBC),wet-to-dry ratio of tissues(W/D),and the HE staining results after 6 h were evaluated.Results:In group T,the success rate of the CA-CPR model was 60%(18/30),and CLS occurred in 26.6%(8/30)of the rats.There were no significant differences in the baseline characteristics,including BVS,BG,and CBC,among the three groups(P>0.05).Compared with pre-asphyxia,there were significant differences in BVS,CBC,and BG,including temperature,oxygen saturation(SpO_(2)),mean arterial pressure(MAP),central venous pressure(CVP),white blood cell count(WBC),hemoglobin,hematocrit,pH,pCO_(2),pO_(2),SO_(2),lactate(Lac),base excess(BE),and Na+(P<0.05)after the return of spontaneous circulation(ROSC)in group T.At 6 h after ROSC in group T and at 6 h after surgery in groups N and S,there were significant differences in temperature,heart rate(HR),respiratory rate(RR),SpO_(2),MAP,CVP,WBC,pH,pCO_(2),Na+,and K+among the three groups(P<0.05).Compared with the other two groups,the rats in group T showed a significantly increased W/D weight ratio(P<0.05).The HE-stained sections showed consistent severe lesions in the lung,small intestine,and brain tissues of the rats at 6 h after ROSC following AACA.Conclusion:The CA-CPR model in SD rats induced by asphyxia could reproduce CLS with good stability and reproducibility.
基金by the Program for Professor of Special Appointment(Eastern Scholar,No.TP2020009)at Shanghai Institutions of Higher Learning。
文摘We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recently(Z.Zheng,Journal of Fluid Mechanics,950,A17,2022).Based on the assumption of vertical gravitational-capillary equilibrium,the saturation distribution and profile shape of the invading fluid can be obtained by solving a nonlinear integral-differential equation.The capillary pressure curves p_(c)(s)can then be constructed by systematically varying the injection rate.Together with the relative permeability curves k_(rn)(s)that are already obtained.One can now provide quick estimates on the overall behaviours of interfacial and unsaturated flows in vertically-heterogeneous porous layers.