Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cra...Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cracks and curling)has received increasing attention over the last few years,which has been mainly driven by the forecast climate change that will warm up our planet.There are significant gaps in the current knowledge related to the factors that control the development of curling deformations in soils.For this,the curling phenomenon is investigated through laboratory desiccation tests on different mixtures of artificial soils.The effects of soil grain size distribution,mineralogy,soil microstructure,and soil water content on the curling deformation are analyzed.Digital photos were taken at regular time intervals during the tests to understand the volume changes in the soil samples during drying.It is found that soil fabric and soil water content have significant effects on curling scenario.It is observed that the percentage of sand particles and the initial water content play a critical role in the development of soil curling.Samples of pure clayey minerals experienced shrinkage without or with minor curling during drying.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
BACKGROUND While sunburns are very common,especially in pediatrics,curling ulcers secondary to sunburns are a very rare entity that has not been noted in the literature in over fifty years.This case is the first addit...BACKGROUND While sunburns are very common,especially in pediatrics,curling ulcers secondary to sunburns are a very rare entity that has not been noted in the literature in over fifty years.This case is the first addition to the literature since the originally documented case.CASE SUMMARY A previously healthy 17 year old male presents to the emergency room with lethargy,shortness of breath on exertion,dark stools and nausea.His fatigue started to become significantly worse four days prior to admission.Approximately two weeks prior to admission,the patient was on a beach vacation with his family at which time he suffered severe sunburns.He had developed crampy epigastric abdominal pain,which was followed by dark,loose stools.On exam,he is non-toxic appearing,but with pallor and peeling skin on his face and chest with epigastric tenderness.Infectious stool studies were all negative including Helicobacter pylori.He denies use of any non-steroidal anti-inflammatory drugs and also denies alcohol or recreational drug use.While admitted he is found to be significantly anemic with his hemoglobin as low as 6.3 requiring two units of packed red blood cells.Endoscopy revealed several severe and deep ulcerations in the antrum and body of the stomach indicative of stress or curling ulcers.CONCLUSION While the incidence of stress ulcers is not known,it is most common with severe acute illness,most commonly presenting as upper gastrointestinal(GI)bleeding.It is essential to be aware of the risk of curling ulcers secondary to severe sunburns as patients with stress ulcer GI bleeding have increased morbidity and mortality compared to those who do not have GI bleed.展开更多
Curling results from the temperature differential across the concrete slab thickness and may induce undue stresses in newly placed slab. This study deals with the finite element (FE) analysis of curling, curling str...Curling results from the temperature differential across the concrete slab thickness and may induce undue stresses in newly placed slab. This study deals with the finite element (FE) analysis of curling, curling stresses, field measurement of curling on a newly built jointed plain concrete pavement, and comparison of its long-term performance using both Mechanistic-Empirical Pavement Design Guide (MEPDG) and HIPERPAVII software. The FE analysis was performed with a software program, ANSYS. The test section was modeled as a three-layer system with 300 mm concrete slab, 100 mm treated drainable base, and 150 mm lime-treated subgrade. All layers were assumed to be linear elastic. Temperature data was collected at five different depth locations across the concrete slab with digital data loggers. Curling was measured on five different days with a simple setup. The effect of temperature nonlinearities across the slab thickness was also examined. The results show that both upward and downward curling increase as the temperature differential increases. The maximum stress resulting from the combined effect of curling and traffic loading due to positive temperature differential is higher than that due to the negative temperature differential of the same magnitude. Since temperature differential has a significant influence on curling, both curling and curling stresses can be mitigated at an early age with temperature control, namely via enhanced curing. Both MEPDG and HIPERPAVII showed approximately the same performance for the PCC thickness ranging from 215 mm to 300 mm for this project. Performance prediction from HIPERPAVII is very sensitive to the change in PCC thickness less than 230 mm whereas MEPDG prediction is not as sensitive to the thickness change as with HIPERPAV 1I.展开更多
The theoretical formula for estimating the side curling short spiral chips is simplified. On the basis of experiment, a practical formula for forecasting the chip breaking length is obtained. It is proved by experime...The theoretical formula for estimating the side curling short spiral chips is simplified. On the basis of experiment, a practical formula for forecasting the chip breaking length is obtained. It is proved by experiment that the result from the practical formula fits well with that from the experiments.展开更多
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mai...The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.展开更多
The East African country is a sports powerhouse, especially in athletics. It is now trying to develop curling An athlete moves forward, focused on his aim, and slides a stone across the ice. The curl is in place. Two ...The East African country is a sports powerhouse, especially in athletics. It is now trying to develop curling An athlete moves forward, focused on his aim, and slides a stone across the ice. The curl is in place. Two other athletes use brooms to furiously wipe the ice against the advancing piece of granite to keep it on course, without touching it, so that it comes to a stop close to the center of the “house,” as the target on the track is called. Curling is a high-intensity sport that needs strategy and focus.展开更多
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t...Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.展开更多
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou...Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.展开更多
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u...Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
文摘Soil curling is an important phenomenon associated with volume changes induced by increasing soil suction upon desiccation.The study of soil behaviors associated with drying in soils(e.g.soil shrinkage,desiccation cracks and curling)has received increasing attention over the last few years,which has been mainly driven by the forecast climate change that will warm up our planet.There are significant gaps in the current knowledge related to the factors that control the development of curling deformations in soils.For this,the curling phenomenon is investigated through laboratory desiccation tests on different mixtures of artificial soils.The effects of soil grain size distribution,mineralogy,soil microstructure,and soil water content on the curling deformation are analyzed.Digital photos were taken at regular time intervals during the tests to understand the volume changes in the soil samples during drying.It is found that soil fabric and soil water content have significant effects on curling scenario.It is observed that the percentage of sand particles and the initial water content play a critical role in the development of soil curling.Samples of pure clayey minerals experienced shrinkage without or with minor curling during drying.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
文摘BACKGROUND While sunburns are very common,especially in pediatrics,curling ulcers secondary to sunburns are a very rare entity that has not been noted in the literature in over fifty years.This case is the first addition to the literature since the originally documented case.CASE SUMMARY A previously healthy 17 year old male presents to the emergency room with lethargy,shortness of breath on exertion,dark stools and nausea.His fatigue started to become significantly worse four days prior to admission.Approximately two weeks prior to admission,the patient was on a beach vacation with his family at which time he suffered severe sunburns.He had developed crampy epigastric abdominal pain,which was followed by dark,loose stools.On exam,he is non-toxic appearing,but with pallor and peeling skin on his face and chest with epigastric tenderness.Infectious stool studies were all negative including Helicobacter pylori.He denies use of any non-steroidal anti-inflammatory drugs and also denies alcohol or recreational drug use.While admitted he is found to be significantly anemic with his hemoglobin as low as 6.3 requiring two units of packed red blood cells.Endoscopy revealed several severe and deep ulcerations in the antrum and body of the stomach indicative of stress or curling ulcers.CONCLUSION While the incidence of stress ulcers is not known,it is most common with severe acute illness,most commonly presenting as upper gastrointestinal(GI)bleeding.It is essential to be aware of the risk of curling ulcers secondary to severe sunburns as patients with stress ulcer GI bleeding have increased morbidity and mortality compared to those who do not have GI bleed.
文摘Curling results from the temperature differential across the concrete slab thickness and may induce undue stresses in newly placed slab. This study deals with the finite element (FE) analysis of curling, curling stresses, field measurement of curling on a newly built jointed plain concrete pavement, and comparison of its long-term performance using both Mechanistic-Empirical Pavement Design Guide (MEPDG) and HIPERPAVII software. The FE analysis was performed with a software program, ANSYS. The test section was modeled as a three-layer system with 300 mm concrete slab, 100 mm treated drainable base, and 150 mm lime-treated subgrade. All layers were assumed to be linear elastic. Temperature data was collected at five different depth locations across the concrete slab with digital data loggers. Curling was measured on five different days with a simple setup. The effect of temperature nonlinearities across the slab thickness was also examined. The results show that both upward and downward curling increase as the temperature differential increases. The maximum stress resulting from the combined effect of curling and traffic loading due to positive temperature differential is higher than that due to the negative temperature differential of the same magnitude. Since temperature differential has a significant influence on curling, both curling and curling stresses can be mitigated at an early age with temperature control, namely via enhanced curing. Both MEPDG and HIPERPAVII showed approximately the same performance for the PCC thickness ranging from 215 mm to 300 mm for this project. Performance prediction from HIPERPAVII is very sensitive to the change in PCC thickness less than 230 mm whereas MEPDG prediction is not as sensitive to the thickness change as with HIPERPAV 1I.
文摘The theoretical formula for estimating the side curling short spiral chips is simplified. On the basis of experiment, a practical formula for forecasting the chip breaking length is obtained. It is proved by experiment that the result from the practical formula fits well with that from the experiments.
基金The authors would like to thank NSFC for support toenable the performing of this research (No. 59775055).
文摘The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.
文摘The East African country is a sports powerhouse, especially in athletics. It is now trying to develop curling An athlete moves forward, focused on his aim, and slides a stone across the ice. The curl is in place. Two other athletes use brooms to furiously wipe the ice against the advancing piece of granite to keep it on course, without touching it, so that it comes to a stop close to the center of the “house,” as the target on the track is called. Curling is a high-intensity sport that needs strategy and focus.
基金financially supported by the Industrial Technology Innovation Program of IMAST(No.2023JSYD 01003)the National Natural Science Foundation of China(Nos.52104292 and U2341209)。
文摘Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided.
基金supported by the National Natural Science Foundation of China(No.52072099)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province,China(No.LH2022E093)the Team Program of the Natural Science Foundation of Heilongjiang Province,China(No.TD2021E005)。
文摘Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2021QB055,ZR2023MB017,ZR2022JQ10)the National Natural Science Foundation of China(21901146,220781792,22274083)。
文摘Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.