期刊文献+
共找到1,263篇文章
< 1 2 64 >
每页显示 20 50 100
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
1
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
2
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure built-in electric field
下载PDF
Interfacial built-in electric field and crosslinking pathways enabling WS_(2)/Ti_(3)C_(2)T_(x) heterojunction with robust sodium storage at low temperature
3
作者 Jiabao Li Shaocong Tang +6 位作者 Jingjing Hao Quan Yuan Tianyi Wang Likun Pan Jinliang Li Shenbo Yang Chengyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期635-645,I0014,共12页
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch... Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained. 展开更多
关键词 WS_(2)/Ti_(3)C_(2)T_(x)heterojunction built-in electric field Ion reservoir Reaction kinetics Sodium storage performance at low temperature
下载PDF
Two-dimensional investigation of characteristic parameters and their gradients for the self-generated electric and magnetic fields of laser-induced zirconium plasma
4
作者 Tayyaba SAJID Shazia BASHIR +2 位作者 Mahreen AKRAM Maira RAZZAQ Khaliq MAHMOOD 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期138-155,共18页
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic... Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis. 展开更多
关键词 Faraday cup axial and radial expansion space-charge effect laser-induced zirconium plasma two-electron temperature distribution self-generated electric and magnetic fields
下载PDF
Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries 被引量:1
5
作者 Weiming Xiong Jiande Lin +6 位作者 Huiqun Wang Sha Li Junhao Wang Yuxiang Mao Xiao Zhan De-Yin Wu Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期492-501,I0011,共11页
The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior ele... The practical application of lithium-sulfur(Li-S)batteries is greatly hindered by soluble polysulfides shuttling and sluggish sulfur redox kinetics.Rational design of multifunctional hybrid materials with superior electronic conductivity and high electrocatalytic activity,e.g.,heterostructures,is a promising strategy to solve the above obstacles.Herein,a binary metal sulfide MnS-MoS_(2) heterojunction electrocatalyst is first designed for the construction of high-sulfur-loaded and durable Li-S batteries.The MnS-MoS_(2) p-n heterojunction shows a unique structure of MoS_(2) nanosheets decorated with ample MnS nanodots,which contributes to the formation of a strong built-in electric field at the two-phase interface.The MnS-MoS_(2) hybrid host shows strong soluble polysulfide affinity,enhanced electronic conductivity,and exceptional catalytic effect on sulfur reduction.Benefiting from the synergistic effect,the as-derived S/MnS-MoS_(2) cathode delivers a superb rate capability(643 m A h g^(-1)at 6 C)and a durable cyclability(0.048%decay per cycle over 1000 cycles).More impressively,an areal capacity of 9.9 m A h cm^(-2)can be achieved even under an extremely high sulfur loading of 14.7 mg cm^(-2)and a low electrolyte to sulfur ratio of 2.9μL mg^(-1).This work provides an in-depth understanding of the interfacial catalytic effect of binary metal compound heterojunctions on sulfur reaction kinetics. 展开更多
关键词 Lithium-sulfur battery MnS-MoS_(2)heterojunction built-in electric field Sulfur reaction kinetics High sulfur loading
下载PDF
Optimally arranged TiO_(2)@MoS_(2) heterostructures with effectively induced built-in electric field for high-performance lithium-sulfur batteries 被引量:1
6
作者 Jeongyoub Lee Changhoon Choi +12 位作者 Jung Been Park Seungho Yu Jinho Ha Hyungsoo Lee Gyumin Jang Young Sun Park Juwon Yun Hayoung Im Subin Moon Soobin Lee Jung-Il Choi Dong-Wan Kim Jooho Moon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期496-508,I0012,共14页
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st... To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect TiO_(2)-MoS_(2)heterostructure engineering built-in electric field Multifunctional interlayers
下载PDF
Distribution of Electrical Field Energy for Conversion of Methane to C_2 Hydrocarbons via Dissymmetrical Electric Field Enhanced Plasma 被引量:2
7
作者 Baowei Wang Genhui XU Hongwei Sun 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期115-121,共7页
Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of elect... Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions. The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm^3 and it was higher than the methane dissociation energy (0.0553 J/mm^3). The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned. 展开更多
关键词 electrical field enhanced PLASMA intensity of electrical field distribution of energy
下载PDF
Influence of non-uniform electric field distribution on the atmospheric pressure air dielectric barrier discharge 被引量:2
8
作者 崔伟胜 赵帅 +3 位作者 钱正芳 孙一翎 Mahmoud AL-SALIHI 邓想全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期78-84,共7页
The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field dis... The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future. 展开更多
关键词 dielectric barrier discharge electric field distribution electron avalanche Townsend discharge
下载PDF
Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites 被引量:1
9
作者 丁霞 贾艳霞 魏恩泊 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期569-576,共8页
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e... The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center. 展开更多
关键词 graded composite effective nonlinear alternating-current and direct-current response local electric field distribution
下载PDF
Electron beam modeling and analyses of the electric field distribution and space charge effect 被引量:1
10
作者 蒋越凌 董全林 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期288-293,共6页
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,... In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed. 展开更多
关键词 electron beam electric field distribution space charge effect
下载PDF
Twin boundary dominated electric field distribution in CdZnTe detectors
11
作者 董江鹏 介万奇 +7 位作者 余竞一 郭榕榕 Christian Teichert Kevin-P Gradwohl 张滨滨 罗翔祥 席守智 徐亚东 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期316-320,共5页
The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection. Factors which determine the electric field distribution are not ... The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection. Factors which determine the electric field distribution are not only electric contact, but also intrinsic defects, especially grown-in twin boundaries. Here, the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a {111}–{111} twin plane using the Pockels electro-optic effect. The results of laser beam induced current pulses are also obtained by the transient current technique, and we discuss the influence of the twin boundary on the electric field evolution. These studies reveal a significant distortion of the electric field, which is attributed to the buildup of space charges at twin boundaries. Also, the position of these space charge regions depends on the polarity of the detector bias. An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results. 展开更多
关键词 electric field distribution CDZNTE twin boundary Pockels effect
下载PDF
Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields
12
作者 Hirotake SUGAWARA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第9期1-18,共18页
This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic f... This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well. 展开更多
关键词 PROPAGATOR method electrON velocity distribution function electrON transport COEFFICIENTS CROSSED electric and magnetic fields MAGNETIZED plasma BOLTZMANN equation
下载PDF
Electric field distribution around the chain of composite nanoparticles in ferrofluids
13
作者 范春珍 王俊俏 +3 位作者 程永光 丁佩 梁二军 黄吉平 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期508-513,共6页
Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distr... Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields. 展开更多
关键词 core/shell nanoparticles electric field distribution Laplace's equation
下载PDF
Influence of the channel electric field distribution on the polarization Coulomb field scattering in In_(0.18) Al_(0.82) N/AlN/GaN heterostructure field-effect transistors
14
作者 于英霞 林兆军 +4 位作者 栾崇彪 吕元杰 冯志红 杨铭 王玉堂 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期517-520,共4页
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim... By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher. 展开更多
关键词 In0.18A10.82N/AIN/GaN heterostructure field-effect transistors channel electric field distribution polarization Coulomb field scattering two-dimensional electron gas mobility
下载PDF
Modeling porous structure of oil-pressboard interface and its effect on electric field distribution
15
作者 司马文霞 姜赤龙 +1 位作者 毛文奇 唐信 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期338-343,共6页
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification... The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed. 展开更多
关键词 接口转换 电场分布 多孔结构 压板 计算模型 建模 绝缘系统 有效介电常数
下载PDF
Impact of the Evolution of a Curved Charge Distribution on Electric Field
16
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2022年第4期341-348,共8页
Theoretically, it is plausible to assume for a chosen charge distribution the electric field can be calculated. However, in practice depending on the geometry of the distribution one faces mathematical challenges. In ... Theoretically, it is plausible to assume for a chosen charge distribution the electric field can be calculated. However, in practice depending on the geometry of the distribution one faces mathematical challenges. In this research- oriented project, we select a set of related familiar 2D geometric curves addressing the mathematical issues. Specifically, we consider a family of curves that evolved via step-by-step “evolution”. The evolution begins from a segment of a circular arc to a complete circle. The electric fields are formulated, evaluated, and graphed. Accomplishing these objectives relied heavily on utilizing a Computer Algebra System (CAS), specifically Mathematica [1]. The CPU’s expensive runtimes are circumvented by introducing mathematical procedures. 展开更多
关键词 Charge distribution electric field Computer Algebra System MATHEMATICA Maplesoft
下载PDF
Impact of a Mobile Void within a Charge Distribution on the Electric Field
17
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2022年第4期349-354,共6页
The electric field of a 3D spherical uniform charge distribution embodying a spherical mobile void at an exterior point is calculated. The size of the void and its path is arbitrary. Specifically, three different traj... The electric field of a 3D spherical uniform charge distribution embodying a spherical mobile void at an exterior point is calculated. The size of the void and its path is arbitrary. Specifically, three different trajectories are analyzed. The movement of the void impacts the electric field so that the field becomes time-dependent. In terms of the chosen path and the size of the bubble, we evaluate the time-dependent electric field. The time profile of the field is calculated. Because of the computational challenges, the most of calculation is carried out utilizing a Computer Algebra System (CAS), specifically Mathematica [1]. This project makes the CAS an essential tool not only for calculating the field but for animating the features of the mobile void. An atlas of the study cases is included. 展开更多
关键词 Bubble in a Charge distribution electric field Computer Algebra System MATHEMATICA
下载PDF
Strong internal electric field enhanced polysulfide trapping and ameliorates redox kinetics for lithium-sulfur battery 被引量:1
18
作者 Bin Yang Jinyi Wang +5 位作者 Yuheng Qi Daying Guo Xueyu Wang Guoyong Fang Xi’an Chen Shun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期376-383,I0010,共9页
The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorpti... The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries. 展开更多
关键词 INTERLAYER Strong built-in electric field CATALYTIC Shuttle effect Lithiumsulfur battery
下载PDF
Ultraviolet photodetectors based on ferroelectric depolarization field
19
作者 Xiaoyu Zhou Qingqing Ke +2 位作者 Silin Tang Jilong Luo Zihan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期487-498,I0013,共13页
Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrate... Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrated devices with more functionalities rather than basic photo-detecting ability are highly required and have been triggered ever-growing interest in scientific and industrial communities.Ferroelectric thin films have become a potential candidate in the field of UV detection due to their wide bandgap and unique photovoltaic characteristics.Additionally,ferroelectric thin films perform excellent dielectric,piezoelectric,pyroelectric,acousto-optic effects,etc.,which can satisfy the demand for the diversified development of UV detectors.In this review,according to the different roles of ferroelectric thin films in the device,the UV photodetectors based on ferroelectric films are classified into ferroelectric depolarization field driven type,ferroelectric depolarization field and built-in electric field co-driven type,and ferroelectric field enhanced type.These three types of ferroelectric UV photodetectors have great potential and are expected to promote the development of a new generation of UV detection technology.At the end of the paper,the advantages and challenges of three types of ferroelectric UV photodetectors are summarized,and the possible development direction in the future is proposed. 展开更多
关键词 UV photodetector FERROelectric Thin film Depolarization field built-in electric field
下载PDF
Built‑In Electric Field‑Driven Ultrahigh‑Rate K‑Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti_(3)C_(2)T_(x)MXene
20
作者 Long Pan Rongxiang Hu +7 位作者 Yuan Zhang Dawei Sha Xin Cao Zhuoran Li Yonggui Zhao Jiangxiang Ding Yaping Wang ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期127-140,共14页
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th... Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs. 展开更多
关键词 Transition metal tellurides HETEROSTRUCTURES built-in electric field Potassium-ion batteries Anode material
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部