Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradi...Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.展开更多
Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small vol...Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.展开更多
BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The m...BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.展开更多
Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships amon...Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.展开更多
Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation method...Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation methods. The transient radial track profile depends not only on the linear energy transfer (LET) of the incident ion, but also on the mass and energy of the ion. For the ions with the energies at the Bragg peaks, the radial charge distribution is wider when the ion LET is larger. The results extracted from the GEANT4 and TCAD simulations, together with detailed analysis of the device structure, are presented to demonstrate phenomena observed in the flux related experiment. The analysis shows that the flux effect conclusions drawn from the experiment are intrinsically connected and all indicate the mechanism that the flux effect stems from multiple ion-induced pulses functioning together and relies exquisitely on the specific response of the device.展开更多
Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions...Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.展开更多
Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi...Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi/In-dopedyttrium iron garnet(BiIn:YIG)thin films.The BiIn:YIG(444)films were deposited onto different substrates using pulsedlaser deposition.Low coercivity(<1 Oe)with saturation magnetization of 125.09 emu/cc was achieved along the in-planedirection of BiIn:YIG film.The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance inBiIn:YIG films were obtained to be as low as 4.05×10^(-4)and 5.62 Oe,respectively.In addition to low damping,the giantFaraday rotation angles(up to 2.9×10^(4)deg/cm)were also observed in the BiIn:YIG film.By modifying the magneticstructure and coupling effect between Bi^(3+)and Fe^(3+)of Bi:YIG,doped In^(3+)plays a key role on variation of the magneticproperties.The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic andmagneto-optical devices.展开更多
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtain...A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.展开更多
The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for th...The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.展开更多
We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated...We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (FIRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher FIRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.展开更多
In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experim...In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.展开更多
A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to exten...A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.展开更多
Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was ad...Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.展开更多
We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then ...We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.展开更多
We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect m...We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.展开更多
Classical micromechanical methods for calculating the effective moduli of a heteroge- neous material are generalized to include the interface(surface)effect.By using Hashin's Composite Sphere Assemblage(CSA)model,...Classical micromechanical methods for calculating the effective moduli of a heteroge- neous material are generalized to include the interface(surface)effect.By using Hashin's Composite Sphere Assemblage(CSA)model,a new expression of the bulk modulus for a particle-reinforced com- posite is derived.It is emphasized that the present study is within the finite-deformation framework such that the effective properties are not influenced by the interface stress itself solely,but influenced by the change of the interface stress due to changes of the shape and size of the interface.Hence some inadequacies in previous papers are pointed out.展开更多
The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential vale...The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.展开更多
The most important target of advertisement rhetoric is its aesthetic effect and persuasive force.In order to get this aim,the advertisement usually resorts to the rhetoric devices.This paper firstly gives an introduct...The most important target of advertisement rhetoric is its aesthetic effect and persuasive force.In order to get this aim,the advertisement usually resorts to the rhetoric devices.This paper firstly gives an introduction to the English advertisement,and then it supplies a detailed discussion of some principal rhetorical devices used in English advertisements,that is: parallelism,repetition,pun,irony,parody,figure of speech,creating speech,rhyming and contrast.By using these rhetorical devices and the carefully-chosen words and well-balanced sentences,the advertising words are colorful and have a powerful strength of persuasion.展开更多
基金Project supported by the Foundation of State Key Laboratory of China(Grant Nos.SKLIPR1903Z,1803)the National Natural Science Foundation of China(Grant Nos.U2167208 and 11875223).
文摘Displacement damage effects on the charge-coupled device(CCD)induced by neutrons at the back-streaming white neutron source(Back-n)in the China Spallation Neutron Source(CSNS)are analyzed according to an online irradiation experiment.The hot pixels,random telegraph signal(RTS),mean dark signal,dark current and dark signal non-uniformity(DSNU)induced by Back-n are presented.The dark current is calculated according to the mean dark signal at various integration times.The single-particle displacement damage and transient response are also observed based on the online measurement data.The trends of hot pixels,mean dark signal,DSNU and RTS degradation are related to the integration time and irradiation fluence.The mean dark signal,dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation.In addition,the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design(TCAD)simulation.Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs,leading to an increase in the dark signal.
基金Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘Nanocomposite dielectrics show great promising application in developing next generation wearable all-solidstate cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect(ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.
文摘BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is primarily caused by airway obstruction due to narrowing and blockage in the nasal and nasopha-ryngeal,oropharyngeal,soft palate,and tongue base areas.The mid-frequency anti-snoring device is a new technology based on sublingual nerve stimulation.Its principle is to improve the degree of oropharyngeal airway stenosis in OSAHS patients under mid-frequency wave stimulation.Nevertheless,there is a lack of clinical application and imaging evidence.METHODS We selected 50 patients diagnosed with moderate OSAHS in our hospital between July 2022 and August 2023.They underwent a 4-wk treatment regimen involving the mid-frequency anti-snoring device during nighttime sleep.Following the treatment,we monitored and assessed the sleep apnea quality of life index and Epworth Sleepiness Scale scores.Additionally,we performed computed tomo-graphy scans of the oropharynx in the awake state,during snoring,and while using the mid-frequency anti-snoring device.Cross-sectional area measurements in different states were taken at the narrowest airway point in the soft palate posterior and retrolingual areas.RESULTS Compared to pretreatment measurements,patients exhibited a significant reduction in the apnea-hypopnea index,the percentage of time with oxygen saturation below 90%,snoring frequency,and the duration of the most prolonged apnea event.The lowest oxygen saturation showed a notable increase,and both sleep apnea quality of life index and Epworth Sleepiness Scale scores improved.Oropharyngeal computed tomography scans revealed that in OSAHS patients cross-sectional areas of the oropharyngeal airway in the soft palate posterior area and retrolingual area decreased during snoring compared to the awake state.Conversely,during mid-frequency anti-snoring device treatment,these areas increased compared to snoring.CONCLUSION The mid-frequency anti-snoring device demonstrates the potential to enhance various sleep parameters in patients with moderate OSAHS,thereby improving their quality of life and reducing daytime sleepiness.These therapeutic effects are attributed to the device’s ability to ameliorate the narrowing of the oropharynx in OSAHS patients.
文摘Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor(VDMOS) devices with composite SiO2-Si3N4 film gates are investigated.The relationships among the important electrical parameters of the samples with different thickness SiO2-Si3N4 films,such as threshold voltage,breakdown voltage,and on-state resistance in accumulated dose,are discussed.The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose.However,the relationships between the threshold voltages of the samples and the accumulated dose are more complex,and not only positively drift,but also negatively drift.At the end of the total dose experiment,we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies.We find that the samples with appropriate thickness ratio SiO2-Si3N4 films have a good radiation-hardening ability.This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-Si3N4 films.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261,11690041,and 11675233)
文摘Heavy-ion flux is an important experimental parameter in the ground based single event tests. The flux impact on a single event effect in different memory devices is analyzed by using GEANT4 and TCAD simulation methods. The transient radial track profile depends not only on the linear energy transfer (LET) of the incident ion, but also on the mass and energy of the ion. For the ions with the energies at the Bragg peaks, the radial charge distribution is wider when the ion LET is larger. The results extracted from the GEANT4 and TCAD simulations, together with detailed analysis of the device structure, are presented to demonstrate phenomena observed in the flux related experiment. The analysis shows that the flux effect conclusions drawn from the experiment are intrinsically connected and all indicate the mechanism that the flux effect stems from multiple ion-induced pulses functioning together and relies exquisitely on the specific response of the device.
基金supported by the Fundamental Research Funds for the Central University(No.JZ2023HGTA0182)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFE0201000)the National Science Fund for Distinguished Young Scholars(Grant No.52225201)+2 种基金the National Natural Science Foundation of China(Grant Nos.52372004 and 52072085)the Fundamental Research Funds for the Central Universities(Grant Nos.2023FRFK06001 and HIT.BRET.2022001)Heilongjiang Touyan Innovation Team Program.
文摘Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi/In-dopedyttrium iron garnet(BiIn:YIG)thin films.The BiIn:YIG(444)films were deposited onto different substrates using pulsedlaser deposition.Low coercivity(<1 Oe)with saturation magnetization of 125.09 emu/cc was achieved along the in-planedirection of BiIn:YIG film.The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance inBiIn:YIG films were obtained to be as low as 4.05×10^(-4)and 5.62 Oe,respectively.In addition to low damping,the giantFaraday rotation angles(up to 2.9×10^(4)deg/cm)were also observed in the BiIn:YIG film.By modifying the magneticstructure and coupling effect between Bi^(3+)and Fe^(3+)of Bi:YIG,doped In^(3+)plays a key role on variation of the magneticproperties.The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic andmagneto-optical devices.
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
基金supported by Ministry of Science and Technology of the People’s Republic of China No.2014BAG04B01
文摘A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers.Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels.Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier,in this study,we proposed,designed,and tested a series of pre-swirl energy-saving devices(ESDs).The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power.The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier.We validated the role of Reynolds-averaged Navier–Stokes(RANS)computational fluid dynamics(CFD)in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.
基金Project supported by the National Basis Research Program of China (Grant No. 61343)
文摘The radiation effects of the metal-oxide-semiconductor (MOS) and the bipolar devices are characterised using 8 MeV protons, 60 MeV Br ions and 1 MeV electrons. Key parameters are measured in-situ and compared for the devices. The ionising and nonionising energy losses of incident particles are calculated using the Geant4 and the stopping and range of ions in matter code. The results of the experiment and energy loss calculation for different particles show that different incident particles may give different contributions to MOS and bipolar devices. The irradiation particles, which cause a larger displacement dose within the same chip depth of bipolar devices at a given total dose, would generate more severe damage to the voltage parameters of the bipolar devices. On the contrary, the irradiation particles, which cause larger ionising damage in the gate oxide, would generate more severe damage to MOS devices. In this investigation, we attempt to analyse the sensitivity to radiation damage of the different parameter of the MOS and bipolar devices by comparing the irradiation experimental data and the calculated results using Geant4 and SRIM code.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00602,2010CB934200,2011CB921804,2011CB707600,2011AA010401,and 2011AA010402the National Natural Science Foundation of China under Grant Nos61322408,61334007,61376112,61221004,61274091,61106119,61106082,and 61006011
文摘We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1 T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (FIRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher FIRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.
基金Supported by Hebei Industrial Co.,LTD.of China Tobacco(111201315524)Qiannan Co.LTD.Of Guizhou Industrial Co.,LTD.,China Tobacco([2012]17)~~
文摘In order to realize tobacco curing with energy saving and emission reduc- ing and lower cost, the waste heat recovering equipment was designed and built on blowing-upward type bulk curing barn. The comparative experiment of tobacco leaf curing was conducted between a bulk curing barn with waste heat of flue gas and conventional bulk curing barn. The results showed that the effect of saving coal in bulk curing barn with waste heat of flue gas was obvious than the contrast. The coal consumption quantity was 1.531 kg per kg of dry tobacco leaf. The saving coal in bulk curing barn with use waste heat of flue gas was 0.181 kg per kg of dry tobacco leaf than the contrast and saving coal rate was 10.57%. The electricity consumption quantity was 0.593 kWh per kg of dry tobacco leaf. The saving elec- tricity quantity in bulk curing barn with use waste heat of flue gas was 0.022 kWh/kg and the saving electricity rate was 3.58% than the contrast. The saving curing cost was 0.158 yuan per kg of dry tobacco leaf and saving cost rate 9.09% in bulk cur- ing barn with use waste heat of flue gas than the contrast. The appearance quality, grade structure and primary chemical composition had no significant difference be- tween bulk curing barn with use waste heat of flue gas and the contrast.
基金Project supported by the Special Foundation for State Major Basic Research Program of China (Grant No G2000035602) and the National Natural Science Foundation of China (Grant No 90307006).
文摘A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
基金This work was supported by the National Natural Science Foundation of China,NSFC(Nos.U1803118 and 51974296)and the China Scholarship Council(CSC)(award to Fanfei Meng for PhD period at Kyushu University).
文摘Bulking characteristics of gangue are of great significance for the stability of goafs in mining overburden in the caving zones.In this paper,a particle discrete element method with clusters to represent gangue was adopted to explore the bulking coefficient time effect of the broken rock in the caving zone under three-dimensional triaxial compression condition.The phenomena of stress corrosion,deformation,and failure of rock blocks were simulated in the numerical model.Meanwhile,a new criterion of rock fragments damage was put forward.It was found that the broken rock has obvious viscoelastic properties.A new equation based on the Burgers creep model was proposed to predict the bulking coefficient of broken rock.A deformation characteristic parameter of the prediction equation was analyzed,which can be set as a fixed value in the mid-and long-term prediction of the bulking coefficient.There are quadratic function relationships between the deformation characteristic parameter value and Talbot gradation index,axial pressure and confining pressure.
文摘We use the extended gate field effect transistor (EGFET)as the structure of the chlorine ion sensor,and the chlorine ion ionophores (ETH9033 and TDDMAC1)are incorporated into solvent polymeric membrane (PVC/DOS),then the chlorine ion selective membrane is formed on the sensing window,and the fabrication of the EGFET chlorine ion sensing device is completed.The surface potential on the sensing membrane of the EGFET chlorine ion sensing device will be changed in the different chlorine ion concentration solutions,then changes further gate voltage and drain current to detect chlorine ion concentration.We will study non-ideal effects such as temperature,hysteresis and drift effects for the EGFET chlorine ion sensing device in this paper,these researches will help us to improve the sensing characteristics of the EGFET chlorine ion sensing device.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 10390160), and the National Natural Science Foundation of China (Grant No 30370420).
文摘We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.
基金The project supported by the National Natural Science Foundation of China(10032010,10372004)Shanghai Leading Academic Discipline
文摘Classical micromechanical methods for calculating the effective moduli of a heteroge- neous material are generalized to include the interface(surface)effect.By using Hashin's Composite Sphere Assemblage(CSA)model,a new expression of the bulk modulus for a particle-reinforced com- posite is derived.It is emphasized that the present study is within the finite-deformation framework such that the effective properties are not influenced by the interface stress itself solely,but influenced by the change of the interface stress due to changes of the shape and size of the interface.Hence some inadequacies in previous papers are pointed out.
文摘The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.
文摘The most important target of advertisement rhetoric is its aesthetic effect and persuasive force.In order to get this aim,the advertisement usually resorts to the rhetoric devices.This paper firstly gives an introduction to the English advertisement,and then it supplies a detailed discussion of some principal rhetorical devices used in English advertisements,that is: parallelism,repetition,pun,irony,parody,figure of speech,creating speech,rhyming and contrast.By using these rhetorical devices and the carefully-chosen words and well-balanced sentences,the advertising words are colorful and have a powerful strength of persuasion.