We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density...We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.展开更多
The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many...The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insight...The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.展开更多
Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe...Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.展开更多
Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires ener...Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.展开更多
Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the...Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the effects of CRU application on the photosynthetic rate and endogenous enzyme activities of rice.Accordingly,a twoyear field trial was conducted with a total of seven treatments:CK,no N fertilizer;BBF,regular blended fertilizer;RBBF,20%N-reduced regular blended fertilizer;CRF1,70%CRU+30%regular urea one-time base application;CRF2,60%CRU+40%regular urea one-time base application;RCRF1,CRF1 treatment with 20%N reduction;and RCRF2,CRF2 treatment with 20%N reduction.Each treatment was conducted in triplicate.The results showed that the N recovery efficiency(NRE)of the controlled-release bulk blending fertilizer(CRBBF)treatments was significantly greater over the two years.There were significant yield increases of 4.1–5.9%under the CRF1treatment and 5.6–7.6%under the CRF2 treatment compared to the BBF treatment,but the differences between the reduced-N treatments RBBF and RCRF2 were not significant.Photosynthetic rates under the CRF1 and CRF2treatments were significantly higher than under the other treatments,and they had significantly greater RuBPCase,RuBisCO,glutamate synthase(GOGAT)and glutamine synthetase(GS)enzyme activities.Additionally,the soil NH_(4)^(+)-N and NO_(3)^(–)-N contents under the CRBBF treatments were significantly higher at the late growth stage of rice,which was more in-line with the fertilizer requirements of rice throughout the reproductive period.CRBBF also led to some improvement in rice quality.Compared with the BBF and RBBF treatments,the protein contents under the CRBBF treatments were reduced but the milling,appearance,eating and cooking qualities of the rice were improved.These results showed that the application of CRBBF can improve the NRE,photosynthetic rate and endogenous enzyme activities of rice,ensuring sufficient N nutrition and photosynthetic material production during rice growth and thereby achieving improved rice yield and quality.展开更多
There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical pro...There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
Small-molecule ionic liquids(ILs)are frequently employed as efficient bulk phase modifiers for perovskite materials.However,their inherent characteristics,such as high volatility and ion migration properties,pose chal...Small-molecule ionic liquids(ILs)are frequently employed as efficient bulk phase modifiers for perovskite materials.However,their inherent characteristics,such as high volatility and ion migration properties,pose challenges in addressing the stability issues associated with perovskite solar cells(PSCs).In this study,we design a poly(IL)with multiple active sites,named poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]pyri-dine(P[STFSI][PPyri]),as an efficient additive of perovskite materials.The S=O in the sulfonyl group chelates with uncoordinated Pb^(2+)and forms hydrogen bonds with the organic cations in the perovskite,suppressing the volatilization of the organic cations.The N+in pyridine can fix halide ions through electrostatic interaction with I-and Br-ions to prevent halide ion migration.P[STFSI][PPyri]demonstrates the ability to passivate defects and suppress nonradiative recombination in PSCs.Additionally,it facilitates the fixation of organic and halide ions,thereby enhancing the device’s stability and photoelectric performance.Consequently,the introduction of P[STFSI][PPyri]as a dopant in the devices resulted in an excellent efficiency of 24.62%,demonstrating outstanding long-term operational stability,with the encapsulated device maintaining 87.6%of its initial effi-ciency even after 1500 h of continuous maximum power point tracking.This strategy highlights the promising potential of poly(IL)as an effective additive for PSCs,providing a combination of high performance and stabil-ity.展开更多
An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition w...An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.展开更多
The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion pr...The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.展开更多
Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show ...Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.展开更多
The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter...The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12104216,12241403,and 61974061)the National Key R&D Program of China(Grant No.2021YFB3601600)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.
基金supported by Shandong Provincial Natural Science Foundation(Project ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156).
文摘The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金The National Key Research and Development Program of China under contract No.2022YFE0136500the National Nature Science Foundation of China under contract Nos 41890801 and 42076227the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No.21TQ1400201.
文摘The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.
基金supported by the National Natural Science Foundation of China (52374299,52304320 and 52204306)the Outstanding Youth Foundation of Hunan Province (2023JJ10044)+1 种基金the Key Project of Hunan Provincial Department of Education (22A0211)the Natural Science Foundation of Hunan Province (2023JJ40014)。
文摘Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.
基金National Research Foundation of Korea,Grant/Award Number:2022R1A6A1A03051158BrainLink Program,Grant/Award Number:2022H1D3A3A01077343Nano Material Technology Development Program,Grant/Award Number:2021M3H4A1A02057007。
文摘Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20220563)the Key R&D Program of Jiangsu Province,China(BE2022338)the Colleges and Universities in Jiangsu Province Natural Science Foundation of China(19KJB210014)。
文摘Controlled-release urea(CRU)releases nitrogen(N)at the same pace that rice takes it up,which can effectively improve N use efficiency,increase rice yield and improve rice quality.However,few studies have described the effects of CRU application on the photosynthetic rate and endogenous enzyme activities of rice.Accordingly,a twoyear field trial was conducted with a total of seven treatments:CK,no N fertilizer;BBF,regular blended fertilizer;RBBF,20%N-reduced regular blended fertilizer;CRF1,70%CRU+30%regular urea one-time base application;CRF2,60%CRU+40%regular urea one-time base application;RCRF1,CRF1 treatment with 20%N reduction;and RCRF2,CRF2 treatment with 20%N reduction.Each treatment was conducted in triplicate.The results showed that the N recovery efficiency(NRE)of the controlled-release bulk blending fertilizer(CRBBF)treatments was significantly greater over the two years.There were significant yield increases of 4.1–5.9%under the CRF1treatment and 5.6–7.6%under the CRF2 treatment compared to the BBF treatment,but the differences between the reduced-N treatments RBBF and RCRF2 were not significant.Photosynthetic rates under the CRF1 and CRF2treatments were significantly higher than under the other treatments,and they had significantly greater RuBPCase,RuBisCO,glutamate synthase(GOGAT)and glutamine synthetase(GS)enzyme activities.Additionally,the soil NH_(4)^(+)-N and NO_(3)^(–)-N contents under the CRBBF treatments were significantly higher at the late growth stage of rice,which was more in-line with the fertilizer requirements of rice throughout the reproductive period.CRBBF also led to some improvement in rice quality.Compared with the BBF and RBBF treatments,the protein contents under the CRBBF treatments were reduced but the milling,appearance,eating and cooking qualities of the rice were improved.These results showed that the application of CRBBF can improve the NRE,photosynthetic rate and endogenous enzyme activities of rice,ensuring sufficient N nutrition and photosynthetic material production during rice growth and thereby achieving improved rice yield and quality.
基金This research was primarily supported by a NOAA Warn-on-Forecast(WoF)grant(Grant No.NA16OAR4320115).
文摘There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.
基金supported by the National Natural Science Foundation of China(Grant Nos.22261142666,52372225,52172237,22305191,21975205)the Science,Technology,and Innovation Commission of Shenzhen Municipality(Grant No.GJHZ20220913143204008)+1 种基金the Shaanxi Science Fund for Distinguished Young Scholars(Grant No.2022JC-21)Open Project of State Key Laboratory of Supramolecular Structure and Materials(Grant No.sklssm2022022).
文摘Small-molecule ionic liquids(ILs)are frequently employed as efficient bulk phase modifiers for perovskite materials.However,their inherent characteristics,such as high volatility and ion migration properties,pose challenges in addressing the stability issues associated with perovskite solar cells(PSCs).In this study,we design a poly(IL)with multiple active sites,named poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]pyri-dine(P[STFSI][PPyri]),as an efficient additive of perovskite materials.The S=O in the sulfonyl group chelates with uncoordinated Pb^(2+)and forms hydrogen bonds with the organic cations in the perovskite,suppressing the volatilization of the organic cations.The N+in pyridine can fix halide ions through electrostatic interaction with I-and Br-ions to prevent halide ion migration.P[STFSI][PPyri]demonstrates the ability to passivate defects and suppress nonradiative recombination in PSCs.Additionally,it facilitates the fixation of organic and halide ions,thereby enhancing the device’s stability and photoelectric performance.Consequently,the introduction of P[STFSI][PPyri]as a dopant in the devices resulted in an excellent efficiency of 24.62%,demonstrating outstanding long-term operational stability,with the encapsulated device maintaining 87.6%of its initial effi-ciency even after 1500 h of continuous maximum power point tracking.This strategy highlights the promising potential of poly(IL)as an effective additive for PSCs,providing a combination of high performance and stabil-ity.
基金Project(2012M511401)supported by China Postdoctoral Science FoundationProject(12JJ5018)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2012RS4006)supported by Hunan Provincial Science and Technology Plan of ChinaProject(CSUZC2012028)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.
基金Projects(51171041,51104047) supported by the National Natural Science Foundation of ChinaProject(N100409001) supported by the Fundamental Research Funds for the Central Universities,China
文摘The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.
基金Project (2008-04) supported by the Top Talent Plan of Jiangsu University, ChinaProject (10KJA430008) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions,China
文摘Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.
基金Foundation item: Project (SWU110046) supported by the Startup Foundation for Doctors of Southwest University, ChinaProjects (XDJK2012C017,CDJXS11132228, CDJZR10130012) supported by the Fundamental Research Funds for the Central Universities, China+1 种基金Project (CSTS2006AA4012) supported by the Chongqing Science and Technology Commission, ChinaProject (T201112) supported by Shenzhen Key Laboratory of Special Functional Materials,Shenzhen University,China
文摘The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.