The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996,...The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996, a heat tolerant cultivar and 4628, a heat-sensitive cultivar, was analyzed for their segregation pattern of the difference of seed set rate under optimal temperature condition and high temperature condition. The difference of seed set rate under optimal temperature condition and high temperature condition showed normal distribution, indicating the polygenic control over the trait. To identify main effect of QTL for heat tolerance, the parents were surveyed with 200 primer pairs of simple sequence repeats (SSR). The parental survey revealed 30% polymorphism between parents. In order to detect the main QTL association with heat tolerance, a strategy of combining the DNA pooling from selected segregants and genotyping was adopted. The association of putative markers identified based on DNA pooling from selected segregants was established by single marker analysis (SMA). The results of SMA revealed that SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The heat tolerance during flowering stage in rice was controlled by multiple gene. The SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The two genetic loci, especially for RM3735 on chromosome 4, can be used in marker-assistant-selected method in heat tolerance breeding in rice.展开更多
In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese fl ounder( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances...In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese fl ounder( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. o livaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis(BSA) and quantitative trait loci(QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333(♀: F0768 ×♂: F0915)(Nomenclature rule: F+year+family number) were used to detect simple sequence repeats(SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers(Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group(LG)-1 exhibited a signifi cant difference between DNA, pooled/bulked from the resistant and susceptible groups( P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of signifi cance in LG1, where 17 and 18 SSR markers were identifi ed, respectively. Each model found three resistance-related QTLs by composite interval mapping(CIM). These six QTLs, designated q E1–6, explained 16.0%–89.5% of the phenotypic variance. Two of the QTLs, q E-2 and q E-4, were located at the 66.7 c M region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese fl ounder in the future.展开更多
Near isogenic lines carrying large-effect QTL (qtl2.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in th...Near isogenic lines carrying large-effect QTL (qtl2.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qUl2.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qUl2.1.展开更多
Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic line...Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic lines (NIL) studies were done to identify the RFLP markers closely linked to cocoon shell parameters. Three hundred and fifty two random clones were identified as the low copy number sequence and used for identification of Restriction Fragment Length Polymorphic (RFLP) marker linked to cocoon weight and cocoon shell character. In the bulk segregant analysis, DNA from the parents (B20 A, C.Nichi), F 1 and F 2 progeny of high shell ratio (HSR) and low shell ratio (LSR) were screened for hybridization with the random clones. Polymorphic banding pattern achieved through southern hybridization with different probes indicated the probable correlation of polymorphism with high and low cocoon shell character which are possible landmarks in identifying the putative marker(s) for the cocoon shell character. Out of the 100 probes tried with parents, F 1, F 2 and their bulks, 10 probes were found to be closely linked to cocoon shell characters.展开更多
Brown planthopper (Nilaparvata lugens Stal) is one of the most damaging pests causing hopper burn in rice, and thereby reducing the productivity and also the quality of the product. The effective management strategy...Brown planthopper (Nilaparvata lugens Stal) is one of the most damaging pests causing hopper burn in rice, and thereby reducing the productivity and also the quality of the product. The effective management strategy to control this pest is the identification and transfer of desirable genes to local rice cultivars. The most important approach for developing resistant cultivars is the identification of markers, which can help in marker-assisted selection of more durable resistant genotype. The susceptible parent IR50 and the resistant parent Ptb33, and their F2 populations were used in bulked segregant analysis for identification of resistant genes with random amplified polymorphic DNA marker (RAPD) primers. The primers OPC7 and OPAG14 showed both dominant and susceptible specific banding pattern so called co-dominant markers. Moreover, OPC7697 and OPAG14680 showed resistant specific bands and thus being in coupling phase, whereas OPC7846 and OPAG14650 showed susceptible specific genotypic bands in bulked segregant analysis. Therefore, the coupling phase markers, OPC7697 and OPAG14680, are considered to be more useful in marker-assisted selection of rice genotypes in crop improvement.展开更多
The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA...The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.展开更多
Kernel size-related traits,including kernel length,kernel width,and kernel thickness,are critical components in determining yield and kernel quality in maize(Zea mays L.).Dissecting the phenotypic characteristics of t...Kernel size-related traits,including kernel length,kernel width,and kernel thickness,are critical components in determining yield and kernel quality in maize(Zea mays L.).Dissecting the phenotypic characteristics of these traits,and discovering the candidate chromosomal regions for these traits,are of potential importance for maize yield and quality improvement.In this study,a total of 139 F2:3 family lines derived from EHel and B73,a distinct line with extremely low ear height(EHel),was used for phenotyping and QTL mapping of three kernel sizerelated traits,including 10-kernel length(KL),10-kernel width(KWid),and 10-kernel thickness(KT).The results showed that only one QTL for KWid,i.e.,qKWid9 on Chr9,with a phenotypic variation explained(PVE)of 13.4%was detected between SNPs of AX-86298371 and AX-86298372,while no QTLs were detected for KL and KT across all 10 chromosomes.Four bulked groups of family lines,i.e.,Groups I to IV,were constructed with F2:3 family lines according to the phenotypic comparisons of KWid between EHel and B73.Among these four groups,Group I possessed a significantly lower KWid than EHel(P=0.0455),Group II was similar to EHel(P=0.34),while both Group III and Group IV were statistically higher than EHel(P<0.05).Besides,except Group IV exhibited a similar KWid to B73(P=0.11),KWid of Groups I to III were statistically lower than B73(P<0.00).By comparing the bulked genotypes of the four groups to EHel and B73,a stable chromosomal region on Chr9 between SNPs of AX-86298372 to AX-86263154,entirely covered by qKWid9,was identified to link KWid with the positive allele of increasing phenotypic effect to KWid from B73,similar to that of qKWid9.A large amount of enzyme activity and macromolecule binding-related genes were annotated within this chromosomal region,suggesting qKWid9 as a potential QTL for KWid in maize.展开更多
Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the ...Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.展开更多
Bulked segregant analysis(BSA)is a rapid,cost-effective method for mapping mutations and quantitative trait loci(QTLs)in animals and plants based on high-throughput sequencing.However,the algorithms currently used for...Bulked segregant analysis(BSA)is a rapid,cost-effective method for mapping mutations and quantitative trait loci(QTLs)in animals and plants based on high-throughput sequencing.However,the algorithms currently used for BSA have not been systematically evaluated and are complex and fallible to operate.We developed a BSA method driven by deep learning,DeepBSA,for QTL mapping and functional gene cloning.DeepBSA is compatible with a variable number of bulked pools and performed well with various simulated and real datasets in both animals and plants.DeepBSA outperformed all other algorithms when comparing absolute bias and signal-to-noise ratio.Moreover,we applied DeepBSA to an F2 segregating maize population of 7160 individuals and uncovered five candidate QTLs,including three well-known plant-height genes.Finally,we developed a user-friendly graphical user interface for DeepBSA,by integrating five widely used BSA algorithms and our two newly developed algorithms,that is easy to operate and can quickly map QTLs and functional genes.The DeepBSA software is freely available to noncommercial users at http://zeasystemsbio.hzau.edu.cn/tools.html and https://github.com/lizhao007/DeepBSA.展开更多
Puccinia striiformis Westend. f. sp. tritici(Pst) pathotype CYR34 is widely virulent and prevalent in China.Here, we report identification of a strpie rust resistance(Yr) gene, designated Yr041133, in winter wheat lin...Puccinia striiformis Westend. f. sp. tritici(Pst) pathotype CYR34 is widely virulent and prevalent in China.Here, we report identification of a strpie rust resistance(Yr) gene, designated Yr041133, in winter wheat line 041133. This line produced a hypersensitive reaction to CYR34 and conferred resistance to 13 other pathotypes. Resistance to CYR34 in line 041133 was controlled by a single dominant gene. Bulked segregant RNA sequencing(BSR-Seq) was performed on a pair of RNA bulks generated by pooling resistant and susceptible recombinant inbred lines. Yr041133 was mapped to a 1.7 c M genetic interval on the chromosome arm 7 BL that corresponded to a 0.8 Mb physical interval(608.9–609.7 Mb) in the Chinese Spring reference genome. Based on its unique physical location Yr041133 differred from the other Yr genes on this chromosome arm.展开更多
Foxtail millet(Setaria italica)is an important C4 model crop;however,due to its high-density planting and high stature,lodging at the filling stage resulted in a serious reduction in yield and quality.Therefore,it is ...Foxtail millet(Setaria italica)is an important C4 model crop;however,due to its high-density planting and high stature,lodging at the filling stage resulted in a serious reduction in yield and quality.Therefore,it is imperative to identify and deploy the genes controlling foxtail millet plant height.In this study,we used a semi-dwarf line 263A and an elite high-stalk breeding variety,Chuang 29 to construct an F2 population to identify dwarf genes.We performed transcriptome analysis(RNA-seq)using internode tissues sampled at three jointing stages of 263A and Chuang 29,as well as bulk segregant analysis(BSA)on their F2 population.A total of 8918 differentially expressed genes(DEGs)were obtained from RNA-seq analysis,and GO analysis showed that DEGs were enriched in functions such as‘‘gibberellin metabolic process”and‘‘oxidoreductase activity”,which have previously been shown to be associated with plant height.A total 593 mutated genes were screened by BSA-seq method.One hundred and seventy-six out of the 593 mutated genes showed differential expression levels between the two parental lines,and seven genes not only showed differential expression in two or three internode tissues but also showed high genomic variation in coding regions,which indicated they play a crucial role in plant height determination.Among them,we found a gibberellin biosynthesis related GA20 oxidase gene(Seita.5G404900),which had a single-base at the third exon,leading to the frameshift mutation at 263A.Cleaved amplified polymorphic sequence assay and association analysis proved the single-base in Seita.5G404900 co-segregated with dwarf phenotype in two independent F2 populations planted in entirely different environments.Taken together,the candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height,and the molecular marker will be useful for marker-assisted dwarf breeding.展开更多
基金supported by the National Natural Science Foundation of China (30500315)Transformation of Agricultural Scientific and Technological Achievements Program from the Ministry of Science and Technology of China (05EFN214300193)Educational Foundation of Hunan Province,China (07C360)
文摘The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996, a heat tolerant cultivar and 4628, a heat-sensitive cultivar, was analyzed for their segregation pattern of the difference of seed set rate under optimal temperature condition and high temperature condition. The difference of seed set rate under optimal temperature condition and high temperature condition showed normal distribution, indicating the polygenic control over the trait. To identify main effect of QTL for heat tolerance, the parents were surveyed with 200 primer pairs of simple sequence repeats (SSR). The parental survey revealed 30% polymorphism between parents. In order to detect the main QTL association with heat tolerance, a strategy of combining the DNA pooling from selected segregants and genotyping was adopted. The association of putative markers identified based on DNA pooling from selected segregants was established by single marker analysis (SMA). The results of SMA revealed that SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The heat tolerance during flowering stage in rice was controlled by multiple gene. The SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The two genetic loci, especially for RM3735 on chromosome 4, can be used in marker-assistant-selected method in heat tolerance breeding in rice.
基金Supported by the National Natural Science Foundation of China(No.31461163005)the Taishan Scholar Project of Shandong Province
文摘In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese fl ounder( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. o livaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis(BSA) and quantitative trait loci(QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333(♀: F0768 ×♂: F0915)(Nomenclature rule: F+year+family number) were used to detect simple sequence repeats(SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers(Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group(LG)-1 exhibited a signifi cant difference between DNA, pooled/bulked from the resistant and susceptible groups( P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of signifi cance in LG1, where 17 and 18 SSR markers were identifi ed, respectively. Each model found three resistance-related QTLs by composite interval mapping(CIM). These six QTLs, designated q E1–6, explained 16.0%–89.5% of the phenotypic variance. Two of the QTLs, q E-2 and q E-4, were located at the 66.7 c M region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese fl ounder in the future.
基金funded by the Generation Challenge Programme Grant in coordination with the Global Partnership Initiative for Plant Breeding Capacity Building and Global Crop Diversity Trust
文摘Near isogenic lines carrying large-effect QTL (qtl2.1), which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments, were evaluated under water stress in the fields. The line which gave higher yield under drought was crossed with a local elite line, PMK3, and forwarded to F2:3 generation. Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields. Low to high broad sense heritability (H) for investigated traits was also found. Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height, biomass and grain yield under stress. Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qUl2.1, and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines. Hence, this simple and breeder friendly marker, RM27933, may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program. Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qUl2.1.
文摘Two silkworm strains viz, B20 A (high cocoon shell ratio) and C.Nichi (low cocoon shell ratio) were sib mated for 10 generations to determine the homozygosis. Both bulked segregant analysis(BSA) and near isogenic lines (NIL) studies were done to identify the RFLP markers closely linked to cocoon shell parameters. Three hundred and fifty two random clones were identified as the low copy number sequence and used for identification of Restriction Fragment Length Polymorphic (RFLP) marker linked to cocoon weight and cocoon shell character. In the bulk segregant analysis, DNA from the parents (B20 A, C.Nichi), F 1 and F 2 progeny of high shell ratio (HSR) and low shell ratio (LSR) were screened for hybridization with the random clones. Polymorphic banding pattern achieved through southern hybridization with different probes indicated the probable correlation of polymorphism with high and low cocoon shell character which are possible landmarks in identifying the putative marker(s) for the cocoon shell character. Out of the 100 probes tried with parents, F 1, F 2 and their bulks, 10 probes were found to be closely linked to cocoon shell characters.
文摘Brown planthopper (Nilaparvata lugens Stal) is one of the most damaging pests causing hopper burn in rice, and thereby reducing the productivity and also the quality of the product. The effective management strategy to control this pest is the identification and transfer of desirable genes to local rice cultivars. The most important approach for developing resistant cultivars is the identification of markers, which can help in marker-assisted selection of more durable resistant genotype. The susceptible parent IR50 and the resistant parent Ptb33, and their F2 populations were used in bulked segregant analysis for identification of resistant genes with random amplified polymorphic DNA marker (RAPD) primers. The primers OPC7 and OPAG14 showed both dominant and susceptible specific banding pattern so called co-dominant markers. Moreover, OPC7697 and OPAG14680 showed resistant specific bands and thus being in coupling phase, whereas OPC7846 and OPAG14650 showed susceptible specific genotypic bands in bulked segregant analysis. Therefore, the coupling phase markers, OPC7697 and OPAG14680, are considered to be more useful in marker-assisted selection of rice genotypes in crop improvement.
文摘The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.
基金the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0583)Maize Germplasm Resources Protection Project,and Fundamental Research Funds for the Central Universities of Southwest University(SWU118087,XDJK2017C031,XDJK2017D072)。
文摘Kernel size-related traits,including kernel length,kernel width,and kernel thickness,are critical components in determining yield and kernel quality in maize(Zea mays L.).Dissecting the phenotypic characteristics of these traits,and discovering the candidate chromosomal regions for these traits,are of potential importance for maize yield and quality improvement.In this study,a total of 139 F2:3 family lines derived from EHel and B73,a distinct line with extremely low ear height(EHel),was used for phenotyping and QTL mapping of three kernel sizerelated traits,including 10-kernel length(KL),10-kernel width(KWid),and 10-kernel thickness(KT).The results showed that only one QTL for KWid,i.e.,qKWid9 on Chr9,with a phenotypic variation explained(PVE)of 13.4%was detected between SNPs of AX-86298371 and AX-86298372,while no QTLs were detected for KL and KT across all 10 chromosomes.Four bulked groups of family lines,i.e.,Groups I to IV,were constructed with F2:3 family lines according to the phenotypic comparisons of KWid between EHel and B73.Among these four groups,Group I possessed a significantly lower KWid than EHel(P=0.0455),Group II was similar to EHel(P=0.34),while both Group III and Group IV were statistically higher than EHel(P<0.05).Besides,except Group IV exhibited a similar KWid to B73(P=0.11),KWid of Groups I to III were statistically lower than B73(P<0.00).By comparing the bulked genotypes of the four groups to EHel and B73,a stable chromosomal region on Chr9 between SNPs of AX-86298372 to AX-86263154,entirely covered by qKWid9,was identified to link KWid with the positive allele of increasing phenotypic effect to KWid from B73,similar to that of qKWid9.A large amount of enzyme activity and macromolecule binding-related genes were annotated within this chromosomal region,suggesting qKWid9 as a potential QTL for KWid in maize.
基金supported by the National Natural Science Foundation of China(32301928)the Basic Research Program of Shanxi Province,China(20210302124504)+3 种基金the China Agriculture Research System of MOF and MARA-Food Legumes(CARS08-G10)the National Laboratory Project of Coarse Grain Germplasm Resources Innovation and Molecular Breeding,China(K462202040-01)the Ph D of Shanxi Agricultural University Scientific Research Start-up Project,China(2021BQ43)the Scientific Research Project of Shanxi Agricultural University,China(YZGC098)。
文摘Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.
基金supported by the National Natural Science Foundation of China(31922068)HainanYazhouBay Seed Lab(B21HJ8102)+2 种基金themajor Program of Hubei Hongshan Laboratory(2021hszd008)Huazhong 3 Agricultural University Scientific&Technological Self-innovation Foundation(2021ZKPY001)Fundamental Research Funds for the Central Universities of China(2662020LXQD002).
文摘Bulked segregant analysis(BSA)is a rapid,cost-effective method for mapping mutations and quantitative trait loci(QTLs)in animals and plants based on high-throughput sequencing.However,the algorithms currently used for BSA have not been systematically evaluated and are complex and fallible to operate.We developed a BSA method driven by deep learning,DeepBSA,for QTL mapping and functional gene cloning.DeepBSA is compatible with a variable number of bulked pools and performed well with various simulated and real datasets in both animals and plants.DeepBSA outperformed all other algorithms when comparing absolute bias and signal-to-noise ratio.Moreover,we applied DeepBSA to an F2 segregating maize population of 7160 individuals and uncovered five candidate QTLs,including three well-known plant-height genes.Finally,we developed a user-friendly graphical user interface for DeepBSA,by integrating five widely used BSA algorithms and our two newly developed algorithms,that is easy to operate and can quickly map QTLs and functional genes.The DeepBSA software is freely available to noncommercial users at http://zeasystemsbio.hzau.edu.cn/tools.html and https://github.com/lizhao007/DeepBSA.
基金Financial support of this research by the National Key Research and Development Program of China(2017YFD0101000)the Agricultural Science and Technology Innovation Program of CAAS(CAAS-ZDRW202002)。
文摘Puccinia striiformis Westend. f. sp. tritici(Pst) pathotype CYR34 is widely virulent and prevalent in China.Here, we report identification of a strpie rust resistance(Yr) gene, designated Yr041133, in winter wheat line 041133. This line produced a hypersensitive reaction to CYR34 and conferred resistance to 13 other pathotypes. Resistance to CYR34 in line 041133 was controlled by a single dominant gene. Bulked segregant RNA sequencing(BSR-Seq) was performed on a pair of RNA bulks generated by pooling resistant and susceptible recombinant inbred lines. Yr041133 was mapped to a 1.7 c M genetic interval on the chromosome arm 7 BL that corresponded to a 0.8 Mb physical interval(608.9–609.7 Mb) in the Chinese Spring reference genome. Based on its unique physical location Yr041133 differred from the other Yr genes on this chromosome arm.
基金supported by the National Key Research and Development Program of China (2018YFD1000702/ 2018YFD1000700)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural SciencesOperating Expenses for Basic Scientific Research of Institute of Crop Science, Chinese Academy of Agricultural Sciences
文摘Foxtail millet(Setaria italica)is an important C4 model crop;however,due to its high-density planting and high stature,lodging at the filling stage resulted in a serious reduction in yield and quality.Therefore,it is imperative to identify and deploy the genes controlling foxtail millet plant height.In this study,we used a semi-dwarf line 263A and an elite high-stalk breeding variety,Chuang 29 to construct an F2 population to identify dwarf genes.We performed transcriptome analysis(RNA-seq)using internode tissues sampled at three jointing stages of 263A and Chuang 29,as well as bulk segregant analysis(BSA)on their F2 population.A total of 8918 differentially expressed genes(DEGs)were obtained from RNA-seq analysis,and GO analysis showed that DEGs were enriched in functions such as‘‘gibberellin metabolic process”and‘‘oxidoreductase activity”,which have previously been shown to be associated with plant height.A total 593 mutated genes were screened by BSA-seq method.One hundred and seventy-six out of the 593 mutated genes showed differential expression levels between the two parental lines,and seven genes not only showed differential expression in two or three internode tissues but also showed high genomic variation in coding regions,which indicated they play a crucial role in plant height determination.Among them,we found a gibberellin biosynthesis related GA20 oxidase gene(Seita.5G404900),which had a single-base at the third exon,leading to the frameshift mutation at 263A.Cleaved amplified polymorphic sequence assay and association analysis proved the single-base in Seita.5G404900 co-segregated with dwarf phenotype in two independent F2 populations planted in entirely different environments.Taken together,the candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height,and the molecular marker will be useful for marker-assisted dwarf breeding.