Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe...Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.展开更多
We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need h...We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti-Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.展开更多
One of the key problems in isogeometric analysis(IGA)is domain parameterization,i.e.,constructing a map between a parametric domain and a computational domain.As a preliminary step of domain parameterization,the mappi...One of the key problems in isogeometric analysis(IGA)is domain parameterization,i.e.,constructing a map between a parametric domain and a computational domain.As a preliminary step of domain parameterization,the mapping between the boundaries of the parametric domain and the computational domain should be established.The boundary correspondence strongly affects the quality of domain parameterization and thus subsequent numerical analysis.Currently,boundary correspondence is generally determined manually and only one approach based on optimal mass transport discusses automatic generation of boundary correspondence.In this article,we propose a deep neural network based approach to generate boundary correspondence for 2D simply connected computational domains.Given the boundary polygon of a planar computational domain,the main problem is to pick four corner vertices on the input boundary in order to subdivide the boundary into four segments which correspond to the four sides of the parametric domain.We synthesize a dataset with corner correspondence and train a fully convolutional network to predict the likelihood of each boundary vertex to be one of the corner vertices,and thus to locate four corner vertices with locally maximum likelihood.We evaluate our method on two types of datasets:MPEG-7 dataset and CAD model dataset.The experiment results demonstrate that our algorithm is faster by several orders of magnitude,and at the same time achieves smaller average angular distortion,more uniform area distortion and higher success rate,compared to the traditional optimization-based method.Furthermore,our neural network exhibits good generalization ability on new datasets.展开更多
Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijin...Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.展开更多
Two necessary and sufficient conditions for the validity of the conjecture K 0(h)=K 1(h) are given, which are independent of the complex dilatations of extremal quasiconformal mappings, where K 0(h) is the maximal con...Two necessary and sufficient conditions for the validity of the conjecture K 0(h)=K 1(h) are given, which are independent of the complex dilatations of extremal quasiconformal mappings, where K 0(h) is the maximal conformal modulus dilatation of the boundary homeomorphism h, K 1(h) is the maximal dilatation of extremal quasiconformal mappings that agree with h on the boundary. In addition, when the complex dilatation of an extremal quasiconformal mapping is known, the proof of the result simplifies Reich and Chen Jixiu-Chen Zhiguo’s result.展开更多
In this paper,we consider the Cahn-Hilliard-Hele-Shaw(CHHS)system with the dynamic boundary conditions,in which both the bulk and surface energy parts play important roles.The scalar auxiliary variable approach is int...In this paper,we consider the Cahn-Hilliard-Hele-Shaw(CHHS)system with the dynamic boundary conditions,in which both the bulk and surface energy parts play important roles.The scalar auxiliary variable approach is introduced for the physical system;the mass conservation and energy dissipation is proved for the CHHS system.Subsequently,a fully discrete SAV finite element scheme is proposed,with the mass conservation and energy dissipation laws established at a theoretical level.In addition,the convergence analysis and error estimate is provided for the proposed SAV numerical scheme.展开更多
基金supported by the National Natural Science Foundation of China (52374299,52304320 and 52204306)the Outstanding Youth Foundation of Hunan Province (2023JJ10044)+1 种基金the Key Project of Hunan Provincial Department of Education (22A0211)the Natural Science Foundation of Hunan Province (2023JJ40014)。
文摘Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.
文摘We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti-Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
文摘One of the key problems in isogeometric analysis(IGA)is domain parameterization,i.e.,constructing a map between a parametric domain and a computational domain.As a preliminary step of domain parameterization,the mapping between the boundaries of the parametric domain and the computational domain should be established.The boundary correspondence strongly affects the quality of domain parameterization and thus subsequent numerical analysis.Currently,boundary correspondence is generally determined manually and only one approach based on optimal mass transport discusses automatic generation of boundary correspondence.In this article,we propose a deep neural network based approach to generate boundary correspondence for 2D simply connected computational domains.Given the boundary polygon of a planar computational domain,the main problem is to pick four corner vertices on the input boundary in order to subdivide the boundary into four segments which correspond to the four sides of the parametric domain.We synthesize a dataset with corner correspondence and train a fully convolutional network to predict the likelihood of each boundary vertex to be one of the corner vertices,and thus to locate four corner vertices with locally maximum likelihood.We evaluate our method on two types of datasets:MPEG-7 dataset and CAD model dataset.The experiment results demonstrate that our algorithm is faster by several orders of magnitude,and at the same time achieves smaller average angular distortion,more uniform area distortion and higher success rate,compared to the traditional optimization-based method.Furthermore,our neural network exhibits good generalization ability on new datasets.
基金funded by the National Basic Research Program of China (Grant No.2014CB447900)Xiaofeng GUO acknowledges the support of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences (Grant No.LAPC-KF-2009-02)
文摘Based on measurements at the Beijing 325-m Meteorological Tower,this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing(China),primarily due to haze and dust events(15–30 April 2012).Of particular interest were relevant vertical variations within the lower urban boundary layer(UBL).First,the haze and dust events were characterized by different atmospheric conditions,as quite low wind speed and high humidity are typically observed during haze events.In addition,for the description of stability conditions,the bulk Richardson number(RiB) was calculated for three different height intervals: 8–47,47–140,and 140–280 m.The values of RiB indicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140–280-m height interval,positive values of RiB occurred for about 85% of the time.The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle,which,by contrast,was rarely seen at 140 m during daytime.These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.
文摘Two necessary and sufficient conditions for the validity of the conjecture K 0(h)=K 1(h) are given, which are independent of the complex dilatations of extremal quasiconformal mappings, where K 0(h) is the maximal conformal modulus dilatation of the boundary homeomorphism h, K 1(h) is the maximal dilatation of extremal quasiconformal mappings that agree with h on the boundary. In addition, when the complex dilatation of an extremal quasiconformal mapping is known, the proof of the result simplifies Reich and Chen Jixiu-Chen Zhiguo’s result.
基金supported by NSFC(Grant No.11871441)supported by NSF(Grant No.DMS-2012669).
文摘In this paper,we consider the Cahn-Hilliard-Hele-Shaw(CHHS)system with the dynamic boundary conditions,in which both the bulk and surface energy parts play important roles.The scalar auxiliary variable approach is introduced for the physical system;the mass conservation and energy dissipation is proved for the CHHS system.Subsequently,a fully discrete SAV finite element scheme is proposed,with the mass conservation and energy dissipation laws established at a theoretical level.In addition,the convergence analysis and error estimate is provided for the proposed SAV numerical scheme.