[Objective] This study aimed to make use of the limited filamentous sludge bulking characteristics to purify water quality and save energy. [Method] The effects of dissolved oxygen (DO) on sludge bulking were explor...[Objective] This study aimed to make use of the limited filamentous sludge bulking characteristics to purify water quality and save energy. [Method] The effects of dissolved oxygen (DO) on sludge bulking were explored by changing the DO con- centration in the aerobiotic pool of NO system from the low load (0.25 kg COD/(kg MLSS.d)) and the medium to high load (0.55 kgCOD/(kg MLSSod)). [Result] In the NO activated sludge system, when the sludge load was 0.25 kg COD/(kg MLSS.d), DO=1.5 mg/L, the sludge index was at around 250, while when the sludge load- ing was 0.55 kg COD/(kg MLSS.d), DO=1.5 mg/L, the sludge index was close to 300, occurring the limited filamentous bulking. The bulked sludge still showed high removal rates to COD, SS, nitrogen and phosphorus. [Conclusion] It could improve the oxygen transfer rate and reduce the aeration rate at low DO conditions to achieve energy-saving.展开更多
Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure wit...Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control.展开更多
基金Supported by the National Natural Science Foundation of China(51208068)~~
文摘[Objective] This study aimed to make use of the limited filamentous sludge bulking characteristics to purify water quality and save energy. [Method] The effects of dissolved oxygen (DO) on sludge bulking were explored by changing the DO con- centration in the aerobiotic pool of NO system from the low load (0.25 kg COD/(kg MLSS.d)) and the medium to high load (0.55 kgCOD/(kg MLSSod)). [Result] In the NO activated sludge system, when the sludge load was 0.25 kg COD/(kg MLSS.d), DO=1.5 mg/L, the sludge index was at around 250, while when the sludge load- ing was 0.55 kg COD/(kg MLSS.d), DO=1.5 mg/L, the sludge index was close to 300, occurring the limited filamentous bulking. The bulked sludge still showed high removal rates to COD, SS, nitrogen and phosphorus. [Conclusion] It could improve the oxygen transfer rate and reduce the aeration rate at low DO conditions to achieve energy-saving.
基金supported by the National Natural Science Foundation of China (No.50708089)the Program for Changjiang Scholars and Innovative Research Team in University of MOE of China (PCSIRT) (No.IRT0853)+1 种基金the Natural Science Foundation of Shaanxi Province (No.2009JQ7002)the Research Plant for Key Laboratoryof Universities of Shaanxi Province (No.09JS027)
文摘Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control.