Mesocarbon microbeads (MCMB) and super fine mesophase powder (SFMP) were prepared firstly from a coal tar pitch and then hot-condensed into high-density isotropic carbon (HDIC) bulks under 160 MPa and finally si...Mesocarbon microbeads (MCMB) and super fine mesophase powder (SFMP) were prepared firstly from a coal tar pitch and then hot-condensed into high-density isotropic carbon (HDIC) bulks under 160 MPa and finally sintered at 1 000 ℃. By analyzing the thermogravimetric behavior of the MCMB and SFMP powders, their volume shrinkage and weight loss during sintering and the bulk density and flexural strengths of their sintered bulks, it was found that the smaller sizes and the richer β-resin contents of SFMP ha)re facilitated formation of sintered bulks with more compact isotropic structure and higher flexural strengths than MCMB. Because of the filling and bonding effects of SFMP on MCMB bulks, addition of SFMP, albeit a little, can greatly increase the flexural strengths of sintered bulks of MCMB. However, adding MCMB, even a slight amount, into SFMP can severely impair the flexural strength of sintered bulks. This might be attributed to both the crack initiation along the boundaries between MCMB and SFMP and the formation of layered texture of MCMB sphere.展开更多
A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an 'oxygen-free'(an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system,where the ...A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an 'oxygen-free'(an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system,where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system.The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks.It was found that the specific ...展开更多
Y-Ba-Cu-O is a promising high temperature superconductor material because of its good electrical and magnetic properties. However, large and complex bulks cannot be made directly, and joining is a good way to solve th...Y-Ba-Cu-O is a promising high temperature superconductor material because of its good electrical and magnetic properties. However, large and complex bulks cannot be made directly, and joining is a good way to solve this problem. Joining Y-Ba-Cu-O with filler material was widely used and reported, but sliced melt solder was rarely reported, especially the one that required relatively short time. In this paper, sliced melt Ag doped Y-Ba-Cu-O was used as filler material and the joining time is relatively shorter compared with mast of the published paper. The melt solder was fabricated and tested, the melting temperature is 975℃and there is much less pores found in the solder compared with the sintered solder. The bonding result is very encouraging: the superconductivity recovery ratio is 97.3%, which is about 5% higher than as sintered filler material. The microstructure in the bonding zone is very similar to that in the base material, no Y2BaCuO5 ( Y211 ) phase accumulated during the joining process, which reveals that high quality superconductive bonding was achieved.展开更多
The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magne...The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magnetic field(12 T) and 0 T magnetic field, respectively.Structural characterization was performed by X-ray diffraction, and electron microscopy. The analysis revealed unexpected preferred orientation also in the MgO secondary phase due to the epitaxial growth of(111) MgO on(001) MgB_(2). The influence of oriented microstructure on the superconducting characteristics expressed by critical current density(J_(c)), irreversibility field(H_(irr)), and on the pinning properties were assessed. High anisotropy versus sample orientation in applied magnetic field, H, was observed for J_(c), Hirr, pinning activation energy(U^(*))extracted from relaxation measurements. The zero-field critical current, J_(c0)and F_(p),maxare weakly or not dependent on the direction of H,while the other indicated parameters are significantly influenced. Results enable control of superconducting parameters by further optimization of microstructure through MgB_(2) texturing as a novel and viable strategy for development of bulk MgB2with enhanced properties when taking advantage of its anisotropy.展开更多
The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact struct...The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact structure makes the REBCO bulk magnet widely applicable in many scenarios,such as in motor,generator,and bearing for flywheel.This review focuses on some research areas using the REBCO bulk magnet,which is quite interesting but has attracted little attention,including magnet lens,compact NMR,magnetron sputtering system,drug magnetic targeting system,magnetic separation,and magnetic mirror.In all of these areas,the REBCO bulk magnet shows its own advantages of having a high magnetic field but a small size to improve the final function.展开更多
A number of techniques have been developed to synthesize nanocrystalline bulk materials,including inert-gas condensation and consolidation,electrodeposition,severe plastic deformation,crystallization of amorphous soli...A number of techniques have been developed to synthesize nanocrystalline bulk materials,including inert-gas condensation and consolidation,electrodeposition,severe plastic deformation,crystallization of amorphous solid,surface mechanical attrition,and powder metallurgy.However,it is hard to produce the bulk with controllable nanostructures,especially with the grain sizes controllable in a wide range below 100 nm.In the conventional powder metallurgy,due to the fact that rapid coarsening of the particles ...展开更多
An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled b...An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled by liquid nitrogen.The bulk array was magnetized by a passive PFM technique using three vortex‐type coils placed over each individual bulk and connected in series.The trapped magnetic flux density distribution was comparable to the distribution obtained with more traditional quasi‐static magnetization such as field‐cooling.This suggests that the use of PFM technique on arrays of HTS bulks is possible.PFM has also been performed using each coil individually,to magnetize each bulk sequentially.The magnetization sequences showed a maximum reduction of the peak trapped magnetic flux density of 12%due to the demagnetization effect of the magnetization sequence,while the trapped magnetization distribution was improved.展开更多
目的:比较Fuji IX GP玻璃离子水门汀、3M ESPE Filtek^(TM) Bulk Fill Flowable树脂、VOCO Polofil Supra树脂及Beautiful Flow Plus F03树脂修复根面龋的临床疗效。方法:选取后牙根面龋患者128例(422颗患牙),按照充填修复材料分为A组(F...目的:比较Fuji IX GP玻璃离子水门汀、3M ESPE Filtek^(TM) Bulk Fill Flowable树脂、VOCO Polofil Supra树脂及Beautiful Flow Plus F03树脂修复根面龋的临床疗效。方法:选取后牙根面龋患者128例(422颗患牙),按照充填修复材料分为A组(Fuji IX GP玻璃离子水门汀修复)34例、B组(3M ESPE Filtek^(TM) Bulk Fill Flowable树脂修复)29例、C组(VOCO Polofil Supra树脂修复)35例、D组(Beautiful Flow Plus F03树脂修复)30例。手术治疗后随访6个月,比较4组患者牙髓活力、材料密合性、充填物表面磨损及充填物完好性情况。结果:术后6个月,4组患者牙髓活力均正常。A组、B组、C组、D组材料密合性好的患牙占比分别为75.49%、90.74%、88.57%、97.20%,A组低于B组、C组、D组,差异均有统计学意义(P<0.05);B组与D组、C组与D组比较,差异均有统计学意义(P<0.05),B、C组之间差异无统计学意义(P>0.05)。A组、B组、C组、D组充填物表面无磨损的患牙占比分别为77.45%、95.37%、94.29%、99.07%,A组占比低于B组、C组及D组,差异均有统计学意义(P<0.05);B组与C组、B组与D组、C组与D组间比较,差异均无统计学意义(P>0.05)。A组、B组、C组、D组充填物完好的患牙占比分别为91.18%、97.22%、97.14%、99.07%,A组占比低于D组,差异有统计学意义(P<0.05)。其他组之间比较,差异均无统计学意义(P>0.05)。结论:4种材料对牙髓活力均无影响,树脂类材料在密合性、表面磨损情况以及完好性上均优于Fuji IX GP玻璃离子水门汀。三种树脂类材料中Beautiful Flow Plus F03在密闭性方面优于其他两种树脂。展开更多
BiCuSeO-based thermoelectric material has attracted great attention as state-of-the-art thermoelectric materials since it was first reported in 2010. In this review, we update the studies on the BiCuSeO thin films fir...BiCuSeO-based thermoelectric material has attracted great attention as state-of-the-art thermoelectric materials since it was first reported in 2010. In this review, we update the studies on the BiCuSeO thin films first. Then, we focus on the most recent progress of multiple approaches that enhance the thermoelectric performance including advanced synthesized technologies, notable mechanisms for higher power factor (optimizing carrier concentration, carrier mobility, Seebeck coefficient) and doping effects predicted by calculation. And finally, aiming at further enhancing the performance of these materials and ultimately commercial application, we give a brief discussion on the urgent issues to which should be paid close attention.展开更多
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and...Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.展开更多
The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-...The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The A...Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The African birch(Anogeissus leiocarpa(DC.)Guill.&Perr.)and pink jacaranda(Stereospermum kunthianum Cham.)trees are the dominant species in the agroforestry parkland system in the drylands of Tigray,Ethiopia.Smallholder farmers highly value these trees for their multifunctional uses including timber,firewood,charcoal,medicine,etc.These trees also could improve soil fertility.However,the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agroecological systems.Hence,we selected twelve isolated trees,six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions.We divided the canopy cover of each tree into three radial distances:mid-canopy,canopy edge,and canopy gap(control).At each distance,we took soil samples from three different depths.We collected 216 soil samples(half disturbed and the other half undisturbed)from each canopy position and soil depth.Bulk density(BD),soil moisture content(SMC),soil organic carbon(SOC),total nitrogen(TN),available phosphorus(AP),available potassium(AK),p H,electrical conductivity(EC),and cation exchange capacity(CEC)were analysed.Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species,CEC under A.leiocarpus,and soil p H under S.kunthianum,all the studied soils were improved under both species canopy as compared with canopy gap.SMC,TN,AP,and AK under canopy of these trees were respectively 24.1%,11.1%,55.0%,and 9.3% higher than those soils under control.The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties.These two species were recommended in the drylands with similar agro-ecological systems.展开更多
Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the ...Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.展开更多
We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density...We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.展开更多
The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insight...The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.展开更多
Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe...Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
文摘Mesocarbon microbeads (MCMB) and super fine mesophase powder (SFMP) were prepared firstly from a coal tar pitch and then hot-condensed into high-density isotropic carbon (HDIC) bulks under 160 MPa and finally sintered at 1 000 ℃. By analyzing the thermogravimetric behavior of the MCMB and SFMP powders, their volume shrinkage and weight loss during sintering and the bulk density and flexural strengths of their sintered bulks, it was found that the smaller sizes and the richer β-resin contents of SFMP ha)re facilitated formation of sintered bulks with more compact isotropic structure and higher flexural strengths than MCMB. Because of the filling and bonding effects of SFMP on MCMB bulks, addition of SFMP, albeit a little, can greatly increase the flexural strengths of sintered bulks of MCMB. However, adding MCMB, even a slight amount, into SFMP can severely impair the flexural strength of sintered bulks. This might be attributed to both the crack initiation along the boundaries between MCMB and SFMP and the formation of layered texture of MCMB sphere.
基金supported by the National Natural Science Foundation of China (50871001)the Program for New Century Excellent Talents in University (NCET 2006-06-0182)the Doctorate Foundation of Chinese Ministry of Education (20070005010)
文摘A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an 'oxygen-free'(an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system,where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system.The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks.It was found that the specific ...
基金Acknowledgements This research is supported by the National Natural Science Foundation of China ( Grant No. 50705050 ) and Beijing Natural Science Foundation ( Grant No. 3093020).
文摘Y-Ba-Cu-O is a promising high temperature superconductor material because of its good electrical and magnetic properties. However, large and complex bulks cannot be made directly, and joining is a good way to solve this problem. Joining Y-Ba-Cu-O with filler material was widely used and reported, but sliced melt solder was rarely reported, especially the one that required relatively short time. In this paper, sliced melt Ag doped Y-Ba-Cu-O was used as filler material and the joining time is relatively shorter compared with mast of the published paper. The melt solder was fabricated and tested, the melting temperature is 975℃and there is much less pores found in the solder compared with the sintered solder. The bonding result is very encouraging: the superconductivity recovery ratio is 97.3%, which is about 5% higher than as sintered filler material. The microstructure in the bonding zone is very similar to that in the base material, no Y2BaCuO5 ( Y211 ) phase accumulated during the joining process, which reveals that high quality superconductive bonding was achieved.
基金financial support from MCI-UEFISCDI Romania, the projects PN030101 (21 N/2019), 5PTE/2020 – BIOTEHKER, and POC 37_697 no. 28/01.09.2016 REBMAT。
文摘The paper presents fabrication and characterization of spark plasma sintered textured(001) MgB_(2)with a record degree of orientation of about 40% and 16% by high-energy ultra-sonication and slip casting in high magnetic field(12 T) and 0 T magnetic field, respectively.Structural characterization was performed by X-ray diffraction, and electron microscopy. The analysis revealed unexpected preferred orientation also in the MgO secondary phase due to the epitaxial growth of(111) MgO on(001) MgB_(2). The influence of oriented microstructure on the superconducting characteristics expressed by critical current density(J_(c)), irreversibility field(H_(irr)), and on the pinning properties were assessed. High anisotropy versus sample orientation in applied magnetic field, H, was observed for J_(c), Hirr, pinning activation energy(U^(*))extracted from relaxation measurements. The zero-field critical current, J_(c0)and F_(p),maxare weakly or not dependent on the direction of H,while the other indicated parameters are significantly influenced. Results enable control of superconducting parameters by further optimization of microstructure through MgB_(2) texturing as a novel and viable strategy for development of bulk MgB2with enhanced properties when taking advantage of its anisotropy.
基金National Key R&D Program of China(Grant No.2018YFF0109401)the National Natural Science Foundation of China(Grant Nos.51702316,51777205,51807191 and 11745005)+1 种基金the International Partnership Program of the Chinese Academy of Sciences(Grant Nos.182111KYSB20170039 and 182111KYSB20170067)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS⁃LY⁃JSC039).
文摘The high temperature superconducting REBa2 Cu3 O7-x(REBCO)bulk with a diameter of only a few centimeters can trap a tesla⁃level magnetic field at a moderate temperature.The high magnetic field in such a compact structure makes the REBCO bulk magnet widely applicable in many scenarios,such as in motor,generator,and bearing for flywheel.This review focuses on some research areas using the REBCO bulk magnet,which is quite interesting but has attracted little attention,including magnet lens,compact NMR,magnetron sputtering system,drug magnetic targeting system,magnetic separation,and magnetic mirror.In all of these areas,the REBCO bulk magnet shows its own advantages of having a high magnetic field but a small size to improve the final function.
文摘A number of techniques have been developed to synthesize nanocrystalline bulk materials,including inert-gas condensation and consolidation,electrodeposition,severe plastic deformation,crystallization of amorphous solid,surface mechanical attrition,and powder metallurgy.However,it is hard to produce the bulk with controllable nanostructures,especially with the grain sizes controllable in a wide range below 100 nm.In the conventional powder metallurgy,due to the fact that rapid coarsening of the particles ...
基金supported by JSPS KAKENHI Grant Numbers 20K21044(2020–2022).
文摘An array of three GdBa_(2)Cu_(3)O_(7‐δ)bulk high‐temperature superconductors(HTS)that mimic the field pole of a high‐power superconducting motor had been magnetized by pulsed field magnetization(PFM)while cooled by liquid nitrogen.The bulk array was magnetized by a passive PFM technique using three vortex‐type coils placed over each individual bulk and connected in series.The trapped magnetic flux density distribution was comparable to the distribution obtained with more traditional quasi‐static magnetization such as field‐cooling.This suggests that the use of PFM technique on arrays of HTS bulks is possible.PFM has also been performed using each coil individually,to magnetize each bulk sequentially.The magnetization sequences showed a maximum reduction of the peak trapped magnetic flux density of 12%due to the demagnetization effect of the magnetization sequence,while the trapped magnetization distribution was improved.
文摘目的:比较Fuji IX GP玻璃离子水门汀、3M ESPE Filtek^(TM) Bulk Fill Flowable树脂、VOCO Polofil Supra树脂及Beautiful Flow Plus F03树脂修复根面龋的临床疗效。方法:选取后牙根面龋患者128例(422颗患牙),按照充填修复材料分为A组(Fuji IX GP玻璃离子水门汀修复)34例、B组(3M ESPE Filtek^(TM) Bulk Fill Flowable树脂修复)29例、C组(VOCO Polofil Supra树脂修复)35例、D组(Beautiful Flow Plus F03树脂修复)30例。手术治疗后随访6个月,比较4组患者牙髓活力、材料密合性、充填物表面磨损及充填物完好性情况。结果:术后6个月,4组患者牙髓活力均正常。A组、B组、C组、D组材料密合性好的患牙占比分别为75.49%、90.74%、88.57%、97.20%,A组低于B组、C组、D组,差异均有统计学意义(P<0.05);B组与D组、C组与D组比较,差异均有统计学意义(P<0.05),B、C组之间差异无统计学意义(P>0.05)。A组、B组、C组、D组充填物表面无磨损的患牙占比分别为77.45%、95.37%、94.29%、99.07%,A组占比低于B组、C组及D组,差异均有统计学意义(P<0.05);B组与C组、B组与D组、C组与D组间比较,差异均无统计学意义(P>0.05)。A组、B组、C组、D组充填物完好的患牙占比分别为91.18%、97.22%、97.14%、99.07%,A组占比低于D组,差异有统计学意义(P<0.05)。其他组之间比较,差异均无统计学意义(P>0.05)。结论:4种材料对牙髓活力均无影响,树脂类材料在密合性、表面磨损情况以及完好性上均优于Fuji IX GP玻璃离子水门汀。三种树脂类材料中Beautiful Flow Plus F03在密闭性方面优于其他两种树脂。
基金financially supported by the National Key Research Programme of China (No. 2016YFA0201003)the National Basic Research Program of China (No. 2013CB632506)+2 种基金the National Natural Science Foundation of China (No. 51772016)the National Natural Science Foundation of China (Nos. 51672155, 51532003)China Postdoctoral Science Foundation (No. 2016M601020)
文摘BiCuSeO-based thermoelectric material has attracted great attention as state-of-the-art thermoelectric materials since it was first reported in 2010. In this review, we update the studies on the BiCuSeO thin films first. Then, we focus on the most recent progress of multiple approaches that enhance the thermoelectric performance including advanced synthesized technologies, notable mechanisms for higher power factor (optimizing carrier concentration, carrier mobility, Seebeck coefficient) and doping effects predicted by calculation. And finally, aiming at further enhancing the performance of these materials and ultimately commercial application, we give a brief discussion on the urgent issues to which should be paid close attention.
基金supported by the Natural Science Foundation of China(52272188,U22A20227)the Natural Science Foundation of Beijing(2232025)+2 种基金the Natural Science Foundation of Chongqing(2022NSCQ-MSX2179)the Department of Science and Technology of Henan Province(Z20221343029)the Experimental Center of Advanced Materials in Beijing Institute of Technology。
文摘Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.
基金the National Natural Science Foundation of China(No.42377172)the National Key Research and Development Plan Project of China(No.2023YFC2907204).
文摘The Voronoi grain-based breakable block model(VGBBM)based on the combined finite-discrete element method(FDEM)was proposed to explicitly characterize the failure mechanism and predict the deformation behavior of hard-rock mine pillars.The influence of the microscopic parameters on the macroscopic mechanical behavior was investigated using laboratory-scale models.The field-scale pillar models(width-to-height,W/H=1,2 and 3)were calibrated based on the empirically predicted stress-strain curves of Creighton mine pillars.The results indicated that as the W/H ratios increased,the VGBBM effectively predicted the transition from strain-softening to pseudo-ductile behavior in pillars,and explicitly captured the separated rock slabs and the V-shaped damage zones on both sides of pillars and conjugate shear bands in core zones of pillars.The volumetric strain field revealed significant compressional deformation in core zones of pillars.While the peak strains of W/H=1 and 2 pillars were relatively consistent,there were significant differences in the strain energy storage and release mechanism.W/H was the primary factor influencing the deformation and strain energy in the pillar core.The friction coefficient of the structural plane was also an important factor affecting the pillar strength and the weakest discontinuity angle.The fracture surface was controlled by the discontinuity angle and the friction coefficient.This study demonstrated the capability of the VGBBM in predicting the strengths and deformation behavior of hard-rock pillars in deep mine design.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金supported by the Sustainable Forest Management Project with the Local Communities in Tigray,northern Ethiopia,which was funded by the Norwegian Agency for Development Cooperation(NORAD)under the Norwegian Programme for Capacity Development in Higher EducationResearch for Development(NORHED)Programme(ETH 13/0018)+4 种基金the Ecological Organic Agriculture Project,Mekelle University,Ethiopiathe Institute of International Education-Scholars Rescue Fund(IIE-SRF)Norwegian University of Life Sciences(NMBU)Faculty of Environmental Sciences and Natural Resource Management(MINA)NORGLOBAL 2 Project in Ethiopia(303600)for supporting the research。
文摘Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The African birch(Anogeissus leiocarpa(DC.)Guill.&Perr.)and pink jacaranda(Stereospermum kunthianum Cham.)trees are the dominant species in the agroforestry parkland system in the drylands of Tigray,Ethiopia.Smallholder farmers highly value these trees for their multifunctional uses including timber,firewood,charcoal,medicine,etc.These trees also could improve soil fertility.However,the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agroecological systems.Hence,we selected twelve isolated trees,six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions.We divided the canopy cover of each tree into three radial distances:mid-canopy,canopy edge,and canopy gap(control).At each distance,we took soil samples from three different depths.We collected 216 soil samples(half disturbed and the other half undisturbed)from each canopy position and soil depth.Bulk density(BD),soil moisture content(SMC),soil organic carbon(SOC),total nitrogen(TN),available phosphorus(AP),available potassium(AK),p H,electrical conductivity(EC),and cation exchange capacity(CEC)were analysed.Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species,CEC under A.leiocarpus,and soil p H under S.kunthianum,all the studied soils were improved under both species canopy as compared with canopy gap.SMC,TN,AP,and AK under canopy of these trees were respectively 24.1%,11.1%,55.0%,and 9.3% higher than those soils under control.The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties.These two species were recommended in the drylands with similar agro-ecological systems.
基金supported by the National Natural Science Foundation of China(32301928)the Basic Research Program of Shanxi Province,China(20210302124504)+3 种基金the China Agriculture Research System of MOF and MARA-Food Legumes(CARS08-G10)the National Laboratory Project of Coarse Grain Germplasm Resources Innovation and Molecular Breeding,China(K462202040-01)the Ph D of Shanxi Agricultural University Scientific Research Start-up Project,China(2021BQ43)the Scientific Research Project of Shanxi Agricultural University,China(YZGC098)。
文摘Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104216,12241403,and 61974061)the National Key R&D Program of China(Grant No.2021YFB3601600)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.
基金The National Key Research and Development Program of China under contract No.2022YFE0136500the National Nature Science Foundation of China under contract Nos 41890801 and 42076227the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No.21TQ1400201.
文摘The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.
基金supported by the National Natural Science Foundation of China (52374299,52304320 and 52204306)the Outstanding Youth Foundation of Hunan Province (2023JJ10044)+1 种基金the Key Project of Hunan Provincial Department of Education (22A0211)the Natural Science Foundation of Hunan Province (2023JJ40014)。
文摘Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.