ead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer...ead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 intermetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selec...Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selected considering the fact that most modern jet transport aircrafts that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. Here it is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which is a key range parameter that can potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height and span are altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump is acquired, an array of bumps is manually placed spanwise of an unswept supercritical wing and analyzed under fully turbulent flow conditions. Different configurations are tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14% drag reduction and a consequent 16% lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span.展开更多
基金supported by the National Natural Science Foundation of China under grant No.50475031/E052104.
文摘ead-free Sn3.5Ag and Sn3.5Ag0.5Cu solder balls were reflowed by laser to form solder bumps. Shear test was performed on the solder bumps, and SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectrometer) was used to analyze the formation of intermetallic compounds (IMCs) at interface region. A finite element modeling on the temperature gradient and distribution at the interface of solder bump during laser reflow process was conducted to elucidate the mechanism of the IMCs growth direction. The results show that the parameters window for laser reflow bumping of Sn3.5Ag0.5Cu was wider than that of Sn3.5Ag. The shear strength of Sn3.5Ag0.5Cu solder bump was comparable to that of Sn3.5Ag solder bump, and was not affected obviously by laser power and irradiation time when appropriate parameters were used. Both laser power and heating time had a significant effect on the formation of IMCs. A continuous AuSn4 intermetallic compound layer and some needle-like AuSn4 were observed at the interface of solder and Au/Ni/Cu metallization layer when the laser power is small. The formation of needle-like AuSn4 was due to temperature gradient at the interface, and the direction of temperature gradient was the preferred growth direction of AuSn4. With increasing the laser power and heating time, the needle-like AuSn4 IMCs dissolved into the bulk solder, and precipitated out once again during solidification along the grain boundary of the solder bump.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
文摘Two-dimensional and three-dimensional shock control contour bumps are designed for a supercritical wing section with the aim of transonic wave drag reduction. The supercritical airfoil (NASA SC (02)-0714) is selected considering the fact that most modern jet transport aircrafts that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. Here it is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which is a key range parameter that can potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height and span are altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump is acquired, an array of bumps is manually placed spanwise of an unswept supercritical wing and analyzed under fully turbulent flow conditions. Different configurations are tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14% drag reduction and a consequent 16% lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span.