Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and ...Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.展开更多
Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient...Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.展开更多
Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats...Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats with similar structures makes the large-scale separation and purification of high-purity nervonic acid very difficult.A new combined process of molecular distillation,urea inclusion and solvent crystallization was established to prepare high-purity nervonic acid with the mixed fatty acids obtained after saponification and acidification of Acer truncatum Bunge oil as raw materials.First,according to the difference in the mean free path of fatty acids,molecular distillation was used to separate and remove C16 saturated fatty acid of palmitic acid and four C18-C20 fatty acids of stearic,oleic,linoleic,and linolenic acids.The content of C16-C20 fatty acids decreased from 72.92% to 19.22% after two-stage molecular distillation processes,in which the contents of saturated fatty acid of palmitic acid decreased to about 0.5%.Then,according to the difference in carbon chain length and saturation of fatty acid,the contents of C22-C24 saturated fatty acids of tetracosanoic and docosanoic acids decreased to 0.21% and 0.07% by urea inclusion with urea/free fatty acid preparation by saponification(SPOMFs)ratio as 0.6.In addition,all saturated fatty acids were basically separated.Finally,according to the difference in the solubility of fatty acids in solvents,the C18-C20 unsaturated fatty acids of oleic,linoleic,and linolenic acids and C22 unsaturated fatty acid of erucic acid were removed by solvent crystallization.The content of C18-C20 unsaturated fatty acids decreased to less than 5% with pentanol as the solvent after the first stage solvent crystallization.The content of erucic acid decreased to 3.47% with anhydrous ethanol as the solvent after the second to fifth stage solvent crystallization.The combined process of molecular distillation,urea inclusion and low temperature crystallization innovatively adopted an efficient,simple and easy-toindustrial solvent crystallization method to separate erucic and nervonic acids,obtaining nervonic acid with purity of 96.53% and final yield of 47.99%.展开更多
Salvia miltiorrhiza Bunge(S.miltiorrhiza),a perennial plant of the genus Salvia,is widely used in traditional folklore medicine.Previous chemical research on this plant contains diterpenoid quinones,phenolic acids,pol...Salvia miltiorrhiza Bunge(S.miltiorrhiza),a perennial plant of the genus Salvia,is widely used in traditional folklore medicine.Previous chemical research on this plant contains diterpenoid quinones,phenolic acids,polysaccharides and other compounds.The pharmacological investigation of S.miltiorrhiza has shown that it has various pharmacological activities,such as cardiovascular system protection,anti-inflammatory,anti-oxidant,anti-tumor,liver protection,and neuroprotection activities.This research tends to give an overview of the main chemical constituents and pharmacological effects of S.miltiorrhiza,aiming to reveal its potential value and provide reference for its further development.展开更多
Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredient...Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.展开更多
[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method...[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method] With Astragalus membranaceus(Ficsh)Bunge as research object,the species of pollinating insect and pollination behavior were investigated.[Result] There were 16 pollinating insect species,among which,Bombus ignitus,Bombus lucoru,Apis sp.,Betasyrphus serarius(wiedemann)and Colias erate(Esper)we...展开更多
[Objective] The research aimed to study the rapid propagation technology and establish effective clone of Hemistepta lyrata Bunge. [Method] With tender stem of Hemistepta lyrata Bunge as material, the conditions neede...[Objective] The research aimed to study the rapid propagation technology and establish effective clone of Hemistepta lyrata Bunge. [Method] With tender stem of Hemistepta lyrata Bunge as material, the conditions needed in calluses induction and differentiation, adventitious bud differentiation and radication, test tube seedling cutting and transplantation were studied. [ Result] The results showed that the optimum medium for granulated calluses induction from tender stem was MS + BA 0.3 mg/L +2,4-D 1 -1.5 mg/L, for granulated calluses and adventitious bud differentiation was MS + AgNO31.5 mg/L + BA 0.4 mg/L + NAA 0.1 mg/L. 1/2 MS + IAA 0.6 mg/L was suitable for test tube seedling rooting and regeneration, and cinder was used as transplantation and cutting substrate. [ Conclusion]This study will provide the scientific reference for choosing the feasible medium in tissue culture of Hemistepta lyrata Bunge.展开更多
文摘Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications.
基金National Natural Science Foundation of China(81903934) Tianjin Health Science and Technology Project(ZC20205).
文摘Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.
基金supported by the National Natural Science Foundation of China(22125802 and 22078010)Beijing Natural Science Foundation(2222017)Big Science Project from BUCT(XK180301).
文摘Nervonic acid is the world’s first and only potent substance that can repair damaged nerve fibers and promote nerve cell regeneration with high nutritional value.The wide variety of fatty acids in plant oils and fats with similar structures makes the large-scale separation and purification of high-purity nervonic acid very difficult.A new combined process of molecular distillation,urea inclusion and solvent crystallization was established to prepare high-purity nervonic acid with the mixed fatty acids obtained after saponification and acidification of Acer truncatum Bunge oil as raw materials.First,according to the difference in the mean free path of fatty acids,molecular distillation was used to separate and remove C16 saturated fatty acid of palmitic acid and four C18-C20 fatty acids of stearic,oleic,linoleic,and linolenic acids.The content of C16-C20 fatty acids decreased from 72.92% to 19.22% after two-stage molecular distillation processes,in which the contents of saturated fatty acid of palmitic acid decreased to about 0.5%.Then,according to the difference in carbon chain length and saturation of fatty acid,the contents of C22-C24 saturated fatty acids of tetracosanoic and docosanoic acids decreased to 0.21% and 0.07% by urea inclusion with urea/free fatty acid preparation by saponification(SPOMFs)ratio as 0.6.In addition,all saturated fatty acids were basically separated.Finally,according to the difference in the solubility of fatty acids in solvents,the C18-C20 unsaturated fatty acids of oleic,linoleic,and linolenic acids and C22 unsaturated fatty acid of erucic acid were removed by solvent crystallization.The content of C18-C20 unsaturated fatty acids decreased to less than 5% with pentanol as the solvent after the first stage solvent crystallization.The content of erucic acid decreased to 3.47% with anhydrous ethanol as the solvent after the second to fifth stage solvent crystallization.The combined process of molecular distillation,urea inclusion and low temperature crystallization innovatively adopted an efficient,simple and easy-toindustrial solvent crystallization method to separate erucic and nervonic acids,obtaining nervonic acid with purity of 96.53% and final yield of 47.99%.
文摘Salvia miltiorrhiza Bunge(S.miltiorrhiza),a perennial plant of the genus Salvia,is widely used in traditional folklore medicine.Previous chemical research on this plant contains diterpenoid quinones,phenolic acids,polysaccharides and other compounds.The pharmacological investigation of S.miltiorrhiza has shown that it has various pharmacological activities,such as cardiovascular system protection,anti-inflammatory,anti-oxidant,anti-tumor,liver protection,and neuroprotection activities.This research tends to give an overview of the main chemical constituents and pharmacological effects of S.miltiorrhiza,aiming to reveal its potential value and provide reference for its further development.
基金Funded by National Natural Science Foundation of China(81903934)Tianjin Health Science and Technology Project(ZC20205).
文摘Objective:To investigate the mechanism by which Astragalus mongholicus Bunge(AM),and Angelica sinensis Diels(AS)act in interstitial lung disease(ILD)based on computational prediction.Methods:We screened the ingredients of AM and AS in PubMed,the Web of Science,China National Knowledge Infrastructure(CNKI)Databases,etc.Then obtained the potential effective components.By sharing the same molecular with ILD,we got the possible target genes for ILD treatment and constructed components–targets–disease network with Cytoscape software.The CTD(Comparative Toxicogenomics Database)database was used for GO and KEGG enrichment analysis of these target genes.Results:59 active ingredients that can be druggable were chosen from AM,67 active ingredients were chosen from AS.77 overlapping target genes for AM and ILD and 36 overlapping target genes for AS and ILD were acquired.The hub targets of AM were PTGS2,PTGS1,CDK2,MAOA,ESR1,TOP2A,GSK3B,ESR2,PPARG,NOS2,The hub targets of AS were PTGS2,GABRA1,PTGS1,CHRM1,SLC6A2,ADRA1B,ADRAIA,ADRB2,CHRM3,GABRA2,CHRM2.Quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,and 5-Hydroxycoumarin were the main active ingredients which have more effective targets.Prediction of the protein-protein interaction network showed PTGS2,GSK3B,PPARG,etc.,were the important predicted targets.The enriched KEGG pathways,including the Immune System,Metabolism of lipids and lipoproteins,Cytokine Signaling in the Immune system,Generic Transcription Pathway,The interleukin pathway,Metabolism of proteins,PI3K-Akt signaling pathway,Metabolic pathways,Innate Immune System,Neuroactive ligand-receptor interaction,Metabolism,GPCR downstream signaling,Amine ligand-binding receptors,Class A/1,Calcium signaling pathway.Molecular docking showed that quercetin,kaempferol,daidzein,pavilion,7-Hydroxycoumarin,5-Hydroxycoumarin had good binding activities with PTGS2 and GSK3B,which mainly mediated PI3K/Akt and other important signaling pathways in the pathogenesis of ILD.Conclusion:The components in AS and AM share some common targets,such as PTGS2.AM and AS may ameliorate ILD through the PI3K-Akt signaling pathway which is mediated by GSK3B.PTGS2,PPARG may also be vital target genes in the treatment of ILD with AM and AS.
基金Supported by International Fund for Agriculture Development"Construction of Fine Variety Breeding Center of Northern Local Chinese Medicinal Materials"~~
文摘[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method] With Astragalus membranaceus(Ficsh)Bunge as research object,the species of pollinating insect and pollination behavior were investigated.[Result] There were 16 pollinating insect species,among which,Bombus ignitus,Bombus lucoru,Apis sp.,Betasyrphus serarius(wiedemann)and Colias erate(Esper)we...
文摘[Objective] The research aimed to study the rapid propagation technology and establish effective clone of Hemistepta lyrata Bunge. [Method] With tender stem of Hemistepta lyrata Bunge as material, the conditions needed in calluses induction and differentiation, adventitious bud differentiation and radication, test tube seedling cutting and transplantation were studied. [ Result] The results showed that the optimum medium for granulated calluses induction from tender stem was MS + BA 0.3 mg/L +2,4-D 1 -1.5 mg/L, for granulated calluses and adventitious bud differentiation was MS + AgNO31.5 mg/L + BA 0.4 mg/L + NAA 0.1 mg/L. 1/2 MS + IAA 0.6 mg/L was suitable for test tube seedling rooting and regeneration, and cinder was used as transplantation and cutting substrate. [ Conclusion]This study will provide the scientific reference for choosing the feasible medium in tissue culture of Hemistepta lyrata Bunge.