Reproductive strategies and spawning habits play key roles in the evolution of endemic East Asian cyprinids.However,the molecular mechanisms underlying the regulation of spawning habits are not well understood.We rece...Reproductive strategies and spawning habits play key roles in the evolution of endemic East Asian cyprinids.However,the molecular mechanisms underlying the regulation of spawning habits are not well understood.We recently identified zona pellucida(Zp) as the top differentially expressed protein between East Asian cyprinids that produce adhesive and semi-buoyant eggs,suggesting that Zp protein may play important roles in the regulation of egg type.In this work,we generated transgenic zebrafish in which oocyte-specific expression of zp genes from rare minnow(Gobiocypris rarus),an East Asian cyprinid laying adhesive eggs,was driven by a zebrafish zp3.2 gene promoter.We found that the transgenic eggs obtained partial adhesiveness and exhibited alteration in hydration and buoyancy.Abnormal metabolism of vitellogenin(VTG) may contribute to enhanced hydration and/or buoyancy.Our work shows that expression of the exogenous zp3a gene from an adhesiveegg producing fish is sufficient to induce changes in both egg adhesiveness and buoyancy in zebrafish,emphasizing the important role of zp genes in the regulation of spawning habits.Our results thus provide new insights into how endemic East Asian cyprinids may have adapted to the Yangtze river-lake system via changes in spawning habits.展开更多
To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by...To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications.展开更多
Although buoyancy and cracking reactions are strongly coupled in the active cooling process, most of the previous studies consider only one of these factors, and their coupling relationship has not been considerably e...Although buoyancy and cracking reactions are strongly coupled in the active cooling process, most of the previous studies consider only one of these factors, and their coupling relationship has not been considerably examined. In this work, this coupling relationship was numerically investigated with complete consideration of different cases of heating, and in the view of energy transport and conversion. By comparing with the no-gravity case(NGC), the results indicate that buoyancy has a significant effect on the bottom-heated case(BHC) and side-heated case(SHC), but has little influence on the top-heated case(THC) owing to the different magnitudes of secondary flow. The heat transfer of the BHC and SHC was significantly enhanced by the secondary flow, but their energy conversion was simultaneously impaired.The conversion of the BHC and SHC was approximately half that of the THC and NGC. For all cases, by analyzing the energy transport ways, the cross section can be classified into three regions in the heating direction. Laminar conduction dominates in region Ⅰ, but gradually fails in region Ⅱ, where its role is replaced by other energy transport ways. In region Ⅲ, convection dominates the energy transport for BHC and SHC, whereas turbulence dominates for THC and NGC.展开更多
To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pres...To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.展开更多
The method for design and analysis of a buoyancy tank riser tensioner system (BTRTS) was put forward in this paper, taking the free standing hybrid riser's top buoyancy tank as an example. The design procedure was ...The method for design and analysis of a buoyancy tank riser tensioner system (BTRTS) was put forward in this paper, taking the free standing hybrid riser's top buoyancy tank as an example. The design procedure was discussed and was also illustrated in a flowchart, after a short description of the global arrangement, structure configuration, and the function of different types of buoyancy tanks (BT). The objective of this paper is to describe a way of developing a BT with minimal hydro force, maximal net lift, and no redundancy of compartments. The method of determining the main dimensions of the BT, namely the length and the outer diameter, was outlined. A series of investigations was conducted for a West Africa FSHR BT design, and the effect of the ratio of the length to the outer diameter (L/D) on the hydrodynamics and the weight of the BT was discussed. The methodology of designing the internal structure of the BT was presented. The effects of the number of compartments and the dimension of the inner stem on the BT weight and strength were compared. The relationship between inner structure and the number one index of the BT as well as the riser's top tension factor (TTF) were illustrated for normal operating conditions and conditions with one or more compartments (or inner stem) damaged. A design instance was given in this paper, when L/D is 4-6, the BT weight and the drag force are compromised. When the BT is divided into 10 compartments, the riser TTF will reach the maximum value, and the ratio of the stem OD to shell OD is about 0.3. A global strength analysis method of the BT and the main load case matrix was also included in the paper, together with the local strength analysis of the buoyancy tank's pad-eye assembly.展开更多
The buoyancy flux Bo at the air/sea interface is very useful to understand the variability of the stratification of the mixed layer, the oceanic mixing, the phytoplankton dynamics and then the coastal upwelling. The a...The buoyancy flux Bo at the air/sea interface is very useful to understand the variability of the stratification of the mixed layer, the oceanic mixing, the phytoplankton dynamics and then the coastal upwelling. The atmospheric reanalysis ERA5 and the oceanic reanalysis ORAP5 data have been used in this study to describe the sea surface Bo and, its influence on the variability of the mixing in the mixed layer and consequently on the coastal upwelling along the northern coast of the Gulf of Guinea. The Bo is negative along the coast and, is characterized by a seasonal variability dominated by the thermal buoyancy flux. This study has also shown that the mixing layer is very shallow along the coast and deeper offshore. The negative value of the Bo increases the stratification of the mixed layer and reduces the mixing. This could explain why the mixed layer is shallow in this region. This work suggests that an increasing trend of the global warming could have dramatic impact in this area by increasing the stratification in the mixed layer and would contribute to reducing the coastal upwelling intensity.展开更多
Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial ...Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial buoyancy force. The Stochastic model yields more accurate inclusion motion than the non-Stochastic model due to including the effect of the turbulent fluctuation. The average residence time of inclusions decreases with increasing size. The thermal buoyancy favors inclusions removal especially the small inclusions. Using solute transport like the dye injection in water model and copper addition in the real steel tundish cannot accurately study the motion of the inclusions. In the simulation, more than 68% inclusions bigger than 10μm are removed to the top, and less than 32% enters the mold. The thermal buoyancy has little effect on the fraction of inclusions moved to the top of the inlet zone, and it mainly favors the removal of inclusions smaller than 100μm to the top surface of the outlet zone. For inclusions bigger than 100μm, the effect of thermal buoyancy on their motion can be ignored compared to the inertial buoyancy effect.展开更多
The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upwar...The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upward flow pattern especially at the outlet zone, and has little effect on the fluid flow in the inlet zone. The maximum viscosity is 700 times larger than the laminar viscosity, which indicates the strong turbulent flow in the tundish. The maximum temperature difference in the whole tundish is 82 K. The temperature near the stopper rod and the short wall is obviously lower than that in the inlet zone. The existence of the stopper rod has a big effect on the fluid flow entering the SEN and the mold. All the characteristics of the tundish geometry should be considered to accurately simulate the fluid flow in the tundish.展开更多
This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of ...This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.展开更多
The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass,species concentration,momentum and energ...The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass,species concentration,momentum and energy.The elastic properties of the considered fluid are taken into account.The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered.The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration.The effects of thermal radiation are also examined.A similarity transformations is used to turn the problem based on partial differential equations into a system of ordinary differential equations.The resulting system is solved using a fourth order RK and shooting methods.The velocity profile,temperature profile,concentration profile,local skin friction,local Nusselt number and local Sherwood number are reported for several circumstances.The influence of the chemical reaction on the properties of the concentration and momentum boundary layers is critically discussed.展开更多
This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted w...This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted with a buoyancy can under different reduced velocities utilizing our in-house code naoe-FOAM-SJTU, a solver based on the open source toolkit OpenFOAM. SST-DDES (shear-stress transport-delayed detached-eddy simulation) model is applied to handle the flowseparation and overset grid method is utilized to solve a large amplitude 6-DOF (6 degrees of freedom) motions. Free decay test and VIM (vortex-induced motion) test are built numerically. In VIM cases, the responses of trajectory, amplitude, frequency are calculated in a series of reduced velocities. With the increase of reduced velocity, yaw frequency is increased, which is similar to surge and sway frequency. And yaw frequency is equal to the sway frequency, which is consistent with experimental results. Furthermore, comparing two cases, one fixed in rotation and the other one free in rotation, it can be concluded that release in the degree of rotation can decrease the sway amplitude but make no difference in the surge amplitude.展开更多
Being the mightiest river emptying into the East China Sea (ECS) and the Pacific Ocean, compounded with the large increase of nitrogen and phosphorus input due to anthropogenic activities, the Changjiang River (Yan...Being the mightiest river emptying into the East China Sea (ECS) and the Pacific Ocean, compounded with the large increase of nitrogen and phosphorus input due to anthropogenic activities, the Changjiang River (Yangtze River) has become a dominating source of these nutrients to the estuary. The high nutrient concentrations notwithstanding, however, outside of the estuary the high biological productivity of the Changjiang diluted water (CDW) are most probably fueled mainly by nutrient-rich subsurface waters originating from the upwelled Kuroshio waters. This is because while the buoyancy of the CDW spreads it out on the ECS continen- tal shelf, the CDW entrains subsurface waters along with the nutrients. Nutrients thus supplied are several times more than those supplied by the Changjiang River.展开更多
In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly pos...In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.展开更多
We are responsible for providing energy and food resources for our next generation.After more than 20 years of research,the author has confirmed that the VAWT with flip-up mechanism can maintain rotation without the b...We are responsible for providing energy and food resources for our next generation.After more than 20 years of research,the author has confirmed that the VAWT with flip-up mechanism can maintain rotation without the brake,even in strong winds.Experiments have shown that the triangularly coupled movable parallelogram buoyancy structure makes it easy to maintain the verticality of the wind turbine tower even under large waves.Furthermore,as a result of studying the connection between the HAWT(horizontal axis wind turbine)and the movable parallelogram buoyancy structure of the triangular connection,the feasibility was confirmed.The only way for all people in the world to secure energy and food fairly is to look for the remaining areas such as the high seas.The author would like to propose the use of the high seas to combat global hunger,which is likely to be a global problem in the future.展开更多
To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system(SPS), a buoyancy module auxiliary installation technology was pr...To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system(SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.展开更多
Hydraulic fracturing occurs in diverse fields of geosciences. We introduce effects of fluid buoyancy into the CGDD (Christianovich-Geertsma-DeKlerk-Daneshy) model of hydranlic fracturing. In the model, a two-dimension...Hydraulic fracturing occurs in diverse fields of geosciences. We introduce effects of fluid buoyancy into the CGDD (Christianovich-Geertsma-DeKlerk-Daneshy) model of hydranlic fracturing. In the model, a two-dimensional one-sided crack in impermeable rock propagates from a horizontally lying wellbore or fluid reservoir at depth; the crack plane is inclined at a prescribed angle to the horizontal; incompressible and Newtonian fluid less dense than the surrounding rock is injected consecutively from the wellbore or fluid reservoir into the crack at a given injection rate. A solution of the crack propagation is obtained using lubrication theory for turbulent or laminar film flow and linear elastic fracture mechanics. The solution shows the importance of the buoyancy of the fluid in the crack as a driving force or a resisting force of the crack propagation. For example,when the water injection rate into a vertical fracture is 10-2 m2/s and the vertical length of the propagating fracture exceeds 100 m, the fluid buoyancy is important (1) as a driving force if the fracture is formed by the upward propagation of a vertical crack and (2) as a resisting force if it is formed by the downward propagation.展开更多
The basic structure and working principle of an unequal-arm buoyancy balance are introduced in this article. Different kinds of error produeed in the unequal-arm buoyancy balance has been researched and analyzed. Firs...The basic structure and working principle of an unequal-arm buoyancy balance are introduced in this article. Different kinds of error produeed in the unequal-arm buoyancy balance has been researched and analyzed. First the temperature influence of the crossbeam is analyzed, then the measurement error is calculated; second, the error produced by the pivot and the counterweight system is analyzed, then the corresponding error reduction method is proposed. It is shown that the error reduction method can promote the precision of the buoyancy, which is critical to balance.展开更多
The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ...The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.展开更多
In the inviscid and incompressible fluid flow regime,surface tension effects on the behaviour of an initially spherical buoyancy-driven bubble rising in an infinite and initially stationary liquid are investigated num...In the inviscid and incompressible fluid flow regime,surface tension effects on the behaviour of an initially spherical buoyancy-driven bubble rising in an infinite and initially stationary liquid are investigated numerically by a volume of fluid (VOF) method. The ratio of the gas density to the liquid density is 0.001, which is close to the case of an air bubble rising in water. It is found by numerical experiment that there exist four critical Weber numbers We1,~We2,~We3 and We4, which distinguish five different kinds of bubble behaviours. It is also found that when 1≤We2, the bubble will finally reach a steady shape, and in this case after it rises acceleratedly for a moment, it will rise with an almost constant speed, and the lower the Weber number is, the higher the speed is. When We 〉We2, the bubble will not reach a steady shape, and in this case it will not rise with a constant speed. The mechanism of the above phenomena has been analysed theoretically and numerically.展开更多
The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux.In most of the existing studies,the heat flux is con...The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux.In most of the existing studies,the heat flux is considered as constant,but whereas we incorporated the non-Fourier flux to get the exact performance of the flow.Also,we excluded the PWT and PHF cases to control the boundary layer of the flow.The governing equations related to our contemplate are changed into non-linear ordinary differential equations(ODE’s)by utilizing appropriate similarity changes,which are at the point enlightened by Runge–Kutta based shooting approach.The equations are broken down concerning boundary conditions and to be explained prescribed wall temperature(PWT)and prescribed heat flux(PHF)cases.The impacts of diverse non-dimensional physical parameters on velocity and temperature profiles are laid out graphically.Also,the assortment of skin friction and local Nusselt number for both PWT and PHF cases for various assessments of non-dimensional parameters have been sorted out.Towards the wrap-up of the examination,we suspect that the friction factor coefficient is higher in the PWT case compared to the PHF case.This result helps to conclude that the flux conditions are useful for cooling applications.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000)。
文摘Reproductive strategies and spawning habits play key roles in the evolution of endemic East Asian cyprinids.However,the molecular mechanisms underlying the regulation of spawning habits are not well understood.We recently identified zona pellucida(Zp) as the top differentially expressed protein between East Asian cyprinids that produce adhesive and semi-buoyant eggs,suggesting that Zp protein may play important roles in the regulation of egg type.In this work,we generated transgenic zebrafish in which oocyte-specific expression of zp genes from rare minnow(Gobiocypris rarus),an East Asian cyprinid laying adhesive eggs,was driven by a zebrafish zp3.2 gene promoter.We found that the transgenic eggs obtained partial adhesiveness and exhibited alteration in hydration and buoyancy.Abnormal metabolism of vitellogenin(VTG) may contribute to enhanced hydration and/or buoyancy.Our work shows that expression of the exogenous zp3a gene from an adhesiveegg producing fish is sufficient to induce changes in both egg adhesiveness and buoyancy in zebrafish,emphasizing the important role of zp genes in the regulation of spawning habits.Our results thus provide new insights into how endemic East Asian cyprinids may have adapted to the Yangtze river-lake system via changes in spawning habits.
基金financially supported by the Natural Science Foundation of Liaoning Province(Grant No.2021-MS-109)。
文摘To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications.
基金supported by the Scientific Research Start-up Funds for Introducing Talent at Sichuan University (20822041C4013)。
文摘Although buoyancy and cracking reactions are strongly coupled in the active cooling process, most of the previous studies consider only one of these factors, and their coupling relationship has not been considerably examined. In this work, this coupling relationship was numerically investigated with complete consideration of different cases of heating, and in the view of energy transport and conversion. By comparing with the no-gravity case(NGC), the results indicate that buoyancy has a significant effect on the bottom-heated case(BHC) and side-heated case(SHC), but has little influence on the top-heated case(THC) owing to the different magnitudes of secondary flow. The heat transfer of the BHC and SHC was significantly enhanced by the secondary flow, but their energy conversion was simultaneously impaired.The conversion of the BHC and SHC was approximately half that of the THC and NGC. For all cases, by analyzing the energy transport ways, the cross section can be classified into three regions in the heating direction. Laminar conduction dominates in region Ⅰ, but gradually fails in region Ⅱ, where its role is replaced by other energy transport ways. In region Ⅲ, convection dominates the energy transport for BHC and SHC, whereas turbulence dominates for THC and NGC.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2B5B02002599)。
文摘To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No.51009033).
文摘The method for design and analysis of a buoyancy tank riser tensioner system (BTRTS) was put forward in this paper, taking the free standing hybrid riser's top buoyancy tank as an example. The design procedure was discussed and was also illustrated in a flowchart, after a short description of the global arrangement, structure configuration, and the function of different types of buoyancy tanks (BT). The objective of this paper is to describe a way of developing a BT with minimal hydro force, maximal net lift, and no redundancy of compartments. The method of determining the main dimensions of the BT, namely the length and the outer diameter, was outlined. A series of investigations was conducted for a West Africa FSHR BT design, and the effect of the ratio of the length to the outer diameter (L/D) on the hydrodynamics and the weight of the BT was discussed. The methodology of designing the internal structure of the BT was presented. The effects of the number of compartments and the dimension of the inner stem on the BT weight and strength were compared. The relationship between inner structure and the number one index of the BT as well as the riser's top tension factor (TTF) were illustrated for normal operating conditions and conditions with one or more compartments (or inner stem) damaged. A design instance was given in this paper, when L/D is 4-6, the BT weight and the drag force are compromised. When the BT is divided into 10 compartments, the riser TTF will reach the maximum value, and the ratio of the stem OD to shell OD is about 0.3. A global strength analysis method of the BT and the main load case matrix was also included in the paper, together with the local strength analysis of the buoyancy tank's pad-eye assembly.
文摘The buoyancy flux Bo at the air/sea interface is very useful to understand the variability of the stratification of the mixed layer, the oceanic mixing, the phytoplankton dynamics and then the coastal upwelling. The atmospheric reanalysis ERA5 and the oceanic reanalysis ORAP5 data have been used in this study to describe the sea surface Bo and, its influence on the variability of the mixing in the mixed layer and consequently on the coastal upwelling along the northern coast of the Gulf of Guinea. The Bo is negative along the coast and, is characterized by a seasonal variability dominated by the thermal buoyancy flux. This study has also shown that the mixing layer is very shallow along the coast and deeper offshore. The negative value of the Bo increases the stratification of the mixed layer and reduces the mixing. This could explain why the mixed layer is shallow in this region. This work suggests that an increasing trend of the global warming could have dramatic impact in this area by increasing the stratification in the mixed layer and would contribute to reducing the coastal upwelling intensity.
文摘Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial buoyancy force. The Stochastic model yields more accurate inclusion motion than the non-Stochastic model due to including the effect of the turbulent fluctuation. The average residence time of inclusions decreases with increasing size. The thermal buoyancy favors inclusions removal especially the small inclusions. Using solute transport like the dye injection in water model and copper addition in the real steel tundish cannot accurately study the motion of the inclusions. In the simulation, more than 68% inclusions bigger than 10μm are removed to the top, and less than 32% enters the mold. The thermal buoyancy has little effect on the fraction of inclusions moved to the top of the inlet zone, and it mainly favors the removal of inclusions smaller than 100μm to the top surface of the outlet zone. For inclusions bigger than 100μm, the effect of thermal buoyancy on their motion can be ignored compared to the inertial buoyancy effect.
文摘The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upward flow pattern especially at the outlet zone, and has little effect on the fluid flow in the inlet zone. The maximum viscosity is 700 times larger than the laminar viscosity, which indicates the strong turbulent flow in the tundish. The maximum temperature difference in the whole tundish is 82 K. The temperature near the stopper rod and the short wall is obviously lower than that in the inlet zone. The existence of the stopper rod has a big effect on the fluid flow entering the SEN and the mold. All the characteristics of the tundish geometry should be considered to accurately simulate the fluid flow in the tundish.
基金This work is supported by the National Natural Science Foundation of China research grant#51679056Natural Science Foundation of Heilongjiang Province of China grant#E2016024.
文摘This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.
基金United Arab Emirates University,Al Ain,UAE with Grant No.31S363-UPAR(4)2018.
文摘The buoyancy driven flow of a second-grade nanofluid in the presence of a binary chemical reaction is analyzed in the context of a model based on the balance equations for mass,species concentration,momentum and energy.The elastic properties of the considered fluid are taken into account.The two-dimensional slip flow of such non-Newtonian fluid over a porous flat material which is stretched vertically upwards is considered.The role played by the activation energy is accounted for through an exponent form modified Arrhenius function added to the Buongiorno model for the nanofluid concentration.The effects of thermal radiation are also examined.A similarity transformations is used to turn the problem based on partial differential equations into a system of ordinary differential equations.The resulting system is solved using a fourth order RK and shooting methods.The velocity profile,temperature profile,concentration profile,local skin friction,local Nusselt number and local Sherwood number are reported for several circumstances.The influence of the chemical reaction on the properties of the concentration and momentum boundary layers is critically discussed.
基金Acknowledgements This work is supported by the National Natural Science Foundation of China (51490675, 51379125, 11432009, 51579145), Chang Jiang Scholars Program (T2014099), Shanghai Excellent Academic Leaders Program (17XD1402300), Shanghai Key Laboratory of Marine Engineering (K2015-11), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013022), Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09) and Lloyd's Register Foundation for doctoral student, to which the authors are most grateful.
文摘This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted with a buoyancy can under different reduced velocities utilizing our in-house code naoe-FOAM-SJTU, a solver based on the open source toolkit OpenFOAM. SST-DDES (shear-stress transport-delayed detached-eddy simulation) model is applied to handle the flowseparation and overset grid method is utilized to solve a large amplitude 6-DOF (6 degrees of freedom) motions. Free decay test and VIM (vortex-induced motion) test are built numerically. In VIM cases, the responses of trajectory, amplitude, frequency are calculated in a series of reduced velocities. With the increase of reduced velocity, yaw frequency is increased, which is similar to surge and sway frequency. And yaw frequency is equal to the sway frequency, which is consistent with experimental results. Furthermore, comparing two cases, one fixed in rotation and the other one free in rotation, it can be concluded that release in the degree of rotation can decrease the sway amplitude but make no difference in the surge amplitude.
基金The National Science Council of Taiwan,China under contract Nos 96 -2621-Z-110-002 and 96-2628-M-110-002-MY3Aim for the Top University Plan under contract No.96C0312
文摘Being the mightiest river emptying into the East China Sea (ECS) and the Pacific Ocean, compounded with the large increase of nitrogen and phosphorus input due to anthropogenic activities, the Changjiang River (Yangtze River) has become a dominating source of these nutrients to the estuary. The high nutrient concentrations notwithstanding, however, outside of the estuary the high biological productivity of the Changjiang diluted water (CDW) are most probably fueled mainly by nutrient-rich subsurface waters originating from the upwelled Kuroshio waters. This is because while the buoyancy of the CDW spreads it out on the ECS continen- tal shelf, the CDW entrains subsurface waters along with the nutrients. Nutrients thus supplied are several times more than those supplied by the Changjiang River.
基金supported by the National Key Research and Development Program of China [grant numbers 2017YFC1501601 and 2015CB452803]the National Natural Science Foundation of China [grant numbers41475058,41730961,and 41875054]+1 种基金the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2016Z003]the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)
文摘In this paper,the authors present the statistical characteristics of the buoyancy of outer-core convective-scale updrafts in numerically simulated sheared tropical cyclones(TCs).The total buoyancy is predominantly positive in weak-to-strong ambient vertical shears,whereas much of the total buoyancy under an extreme shear environment becomes negative.Thermal buoyancy positively contributes to the total buoyancy value.For weakly and moderately sheared TCs,the updraft buoyancy is statistically significantly stronger downshear but smaller upshear.Such a downshear preference of strong buoyancy becomes less evident as the shear magnitude increases.The total buoyancy of updrafts shows a decreasing tendency with radius.Both thermal and dynamic buoyancy do not significantly correlate with vertically averaged vertical mass fluxes.This also leads to no significant correlation between the total buoyancy and vertical mass fluxes of outer-core updrafts.
文摘We are responsible for providing energy and food resources for our next generation.After more than 20 years of research,the author has confirmed that the VAWT with flip-up mechanism can maintain rotation without the brake,even in strong winds.Experiments have shown that the triangularly coupled movable parallelogram buoyancy structure makes it easy to maintain the verticality of the wind turbine tower even under large waves.Furthermore,as a result of studying the connection between the HAWT(horizontal axis wind turbine)and the movable parallelogram buoyancy structure of the triangular connection,the feasibility was confirmed.The only way for all people in the world to secure energy and food fairly is to look for the remaining areas such as the high seas.The author would like to propose the use of the high seas to combat global hunger,which is likely to be a global problem in the future.
基金supported by the National Natural Science Foundation of China (Nos.51479183 and 51779236)
文摘To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system(SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.
文摘Hydraulic fracturing occurs in diverse fields of geosciences. We introduce effects of fluid buoyancy into the CGDD (Christianovich-Geertsma-DeKlerk-Daneshy) model of hydranlic fracturing. In the model, a two-dimensional one-sided crack in impermeable rock propagates from a horizontally lying wellbore or fluid reservoir at depth; the crack plane is inclined at a prescribed angle to the horizontal; incompressible and Newtonian fluid less dense than the surrounding rock is injected consecutively from the wellbore or fluid reservoir into the crack at a given injection rate. A solution of the crack propagation is obtained using lubrication theory for turbulent or laminar film flow and linear elastic fracture mechanics. The solution shows the importance of the buoyancy of the fluid in the crack as a driving force or a resisting force of the crack propagation. For example,when the water injection rate into a vertical fracture is 10-2 m2/s and the vertical length of the propagating fracture exceeds 100 m, the fluid buoyancy is important (1) as a driving force if the fracture is formed by the upward propagation of a vertical crack and (2) as a resisting force if it is formed by the downward propagation.
基金supported by the Education Fund in Hunan Province under Grant No.07D014
文摘The basic structure and working principle of an unequal-arm buoyancy balance are introduced in this article. Different kinds of error produeed in the unequal-arm buoyancy balance has been researched and analyzed. First the temperature influence of the crossbeam is analyzed, then the measurement error is calculated; second, the error produced by the pivot and the counterweight system is analyzed, then the corresponding error reduction method is proposed. It is shown that the error reduction method can promote the precision of the buoyancy, which is critical to balance.
基金Project(51576084)supported by the National Natural Science Foundation of China。
文摘The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672043 and 10272032)
文摘In the inviscid and incompressible fluid flow regime,surface tension effects on the behaviour of an initially spherical buoyancy-driven bubble rising in an infinite and initially stationary liquid are investigated numerically by a volume of fluid (VOF) method. The ratio of the gas density to the liquid density is 0.001, which is close to the case of an air bubble rising in water. It is found by numerical experiment that there exist four critical Weber numbers We1,~We2,~We3 and We4, which distinguish five different kinds of bubble behaviours. It is also found that when 1≤We2, the bubble will finally reach a steady shape, and in this case after it rises acceleratedly for a moment, it will rise with an almost constant speed, and the lower the Weber number is, the higher the speed is. When We 〉We2, the bubble will not reach a steady shape, and in this case it will not rise with a constant speed. The mechanism of the above phenomena has been analysed theoretically and numerically.
文摘The current article discusses the heat transfer characteristics of ferromagnetic liquid over an elastic surface with the thermal radiation and non-Fourier heat flux.In most of the existing studies,the heat flux is considered as constant,but whereas we incorporated the non-Fourier flux to get the exact performance of the flow.Also,we excluded the PWT and PHF cases to control the boundary layer of the flow.The governing equations related to our contemplate are changed into non-linear ordinary differential equations(ODE’s)by utilizing appropriate similarity changes,which are at the point enlightened by Runge–Kutta based shooting approach.The equations are broken down concerning boundary conditions and to be explained prescribed wall temperature(PWT)and prescribed heat flux(PHF)cases.The impacts of diverse non-dimensional physical parameters on velocity and temperature profiles are laid out graphically.Also,the assortment of skin friction and local Nusselt number for both PWT and PHF cases for various assessments of non-dimensional parameters have been sorted out.Towards the wrap-up of the examination,we suspect that the friction factor coefficient is higher in the PWT case compared to the PHF case.This result helps to conclude that the flux conditions are useful for cooling applications.