Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the start...Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.展开更多
In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning r...In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.展开更多
Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning ra...As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.展开更多
The effect of the burn off rate on the structure and mechanical properties in the friction welded joint of low alloy constructional steel 35CrMo is studied in this paper. The results show that the increase in the bur...The effect of the burn off rate on the structure and mechanical properties in the friction welded joint of low alloy constructional steel 35CrMo is studied in this paper. The results show that the increase in the burn off rate and deceleration time of friction welding can improve the toughness of the weld. The mechanism of improving the toughness of the weld is the finer grain size and the lower hardness of the weld. In this paper the microstructure of the joint is also analysed . The fine granular structure in the area near the weld has been studied by TEM.The results indicate that the strengthening mechanism of the weld metal is the high density of dislocation, a number of second island phases and fine grain size. By means of measuring the carbon content of the area near the weld, the effect of the burn off rate on the highest heating temperature of friction welding has also been investigated.展开更多
In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other ca...In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.展开更多
A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during an...A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.展开更多
A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge ...A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.展开更多
The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were expl...The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime.展开更多
文摘Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.
文摘In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (grant No. SAST201363)the Fundamental Research Funds for the Central Universities (grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.
文摘The effect of the burn off rate on the structure and mechanical properties in the friction welded joint of low alloy constructional steel 35CrMo is studied in this paper. The results show that the increase in the burn off rate and deceleration time of friction welding can improve the toughness of the weld. The mechanism of improving the toughness of the weld is the finer grain size and the lower hardness of the weld. In this paper the microstructure of the joint is also analysed . The fine granular structure in the area near the weld has been studied by TEM.The results indicate that the strengthening mechanism of the weld metal is the high density of dislocation, a number of second island phases and fine grain size. By means of measuring the carbon content of the area near the weld, the effect of the burn off rate on the highest heating temperature of friction welding has also been investigated.
文摘In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/ phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.
文摘A 30 mm electrothermal-chemical(ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates(EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient(dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW-1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient(dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.
基金Supported by National Natural Science Foundation of China ( No. 50576064)Youth Foundation of Tianjin University (No. W50201).
文摘A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.
文摘The effects of plasticizers,antioxidants and burning rate modifiers on the aging performance of the composite solid propellant based on hydroxyl-terminated polybutadiene(HTPB)/hexamethylene diisocyanate(HMDI)were explored by apply-ing an accelerated aging program for 90 day at 70 ℃. The HTPB propellant matrix with the diisooctyl sebacate(DOS)as plasti-cizers and diisooctyl azelate(DOZ), antioxidants as N,N ′-Diphenyl-p-phenylenediamine(AO) and 2,2′-methylenebis(4-methyl-6-tert-butylphenol)(cyanox 2246)and burning rate modifiers as barium ferrite(BF),copper chromites(CC)and fer-ric oxide(FO)were varied. Results show that sample(S1)which based on DOS decreases the stress value and increases the strain value which considered to be an excellent start for aging program. Sample(S3)containing AO presents the higher resis-tance to oxidation showing the better performance that reflects on increasing the shelf life of the composite solid propellant mo-tor. Sample(S5)which based on BF enhances the ballistic performance among over the other tested two samples. The accelerat-ed aging program allowed us to estimate the motor in-service lifetime.