The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existen...The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.展开更多
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit...In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.展开更多
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi...This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.展开更多
Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings,especially when inertial heating systems are used.The present study is devot...Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings,especially when inertial heating systems are used.The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system.A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled,allowing realistic simulations of the dynamic movement of the sun patch on a heated slab.The findings show that a period of discomfort as long as 8 h can occur,and persist far after the sunbeam exposure stops.During this period,the heating slab’s surface temperature,considered from an average point of view,can attain 34°C while the indoor temperature reaches 26°C.Simulations conducted using a previously developed model display a good fit with the measurements.展开更多
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ...The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy ...The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy of the photons emitted, are identified and the boundary between them is given. The boundary is determined in terms of the photon emission rate constants and thermal properties of the particles. Also the abundance spectra are calculated for the continuous cooling case, corresponding to small photon energies. The two regimes correspond to continuous cooling and single photon quenching of the unimolecular decay. The radiative effect can be parametrized by a redefinition of the time each individual cluster has available to undergo evaporation, expressed by an effective radiative time constant.展开更多
[Objective] The aim was to study on effects of greenbelts in different varieties on temperature drop under solar thermal radiation. [Method] In residential regions, effects of temperature reduction by five varieties o...[Objective] The aim was to study on effects of greenbelts in different varieties on temperature drop under solar thermal radiation. [Method] In residential regions, effects of temperature reduction by five varieties of greenbelts (megaphanerophyte, dungarunga, shrub, herbaceous plant and bare land) and changing rules with days under the same solar thermal radiation were researched. [Result] Greenbelts' temperature changed with intensity of solar thermal radiation, among which greenbelt of megaphanerophyte absorbed, transfered and reflected thermal radiation through crown canopy. Temperature of underlying surface was reduced accordingly, where correlation between underlying surface's temperature and solar thermal radiation (R) was 0.156 and the temperature declined by 1.9 ℃. In contrast, correlation of temperature of underlying surface (of lawn) with solar thermal radiation (R) was as high as 0.820, but the temperature only declined by 0.6℃. [Conclusion] The established linear relationship between crown's temperature and air temperature actually provides references for temperature measurement of greenbelts at scale.展开更多
In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning r...In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.展开更多
In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the ...In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one.展开更多
This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After bou...This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles.展开更多
An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, ...An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.展开更多
Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10...Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium,as well as considerable radiative heat transfer.In general,high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models.In this paper,the equations governing hypersonic nonequilibrium flow,based on a three-temperature model combined with a thermal radiation solving approach,are used to investigate the radiation effects in the reentry shock layer.An axisymmetric spherical case shows that coupling the flow-field simulation with radiation has a scarce influence on the convective heating prediction,but has some impact on the radiative heating calculation.In particular,for the Apollo capsule reentry,both the absorption coefficient and incident radiation are remarkable inside the shock layer.The radiative heating maximum reaches nearly 38%of that of the convective heating making a considerable contribution to the total aerodynamic heating.These results indicate that in the hypersonic regime,in order to account for the total heating,it is necessary to simulate the high-temperature thermochemical nonequilibrium flows coupled with thermal radiation.展开更多
The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system...The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system via the Bejan number is studied extensively. The governing partial differential equations are converted by using the similarity transformations into a set of coupled ordinary differential equations. The set of these converted equations is solved by using the differential transform method (DTM). The entropy generation in terms of the Bejan number, the coefficient of skin-friction, and the heat transfer rate is furthermore investigated under the effects of various physical parameters of interest. The present study shows that the Bejan number, the velocity and thermal profiles, and the rate of heat transfer decrease with a rise in the Deborah number De while the skin-friction coefficient increases. It is also observed that the entropy generation due to frictional forces is higher than that due to thermal effects. Thus, the study bears the potential application in powder technology as well as in biomedical engineering.展开更多
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo...This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.展开更多
This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid beh...This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.展开更多
In this study,a series of porous intelligent hydrogels were synthesized by radiation exhibiting the lower critical solution temperature(LCST) and fast response involving a combination of A’-isopropyl acrylamideas m...In this study,a series of porous intelligent hydrogels were synthesized by radiation exhibiting the lower critical solution temperature(LCST) and fast response involving a combination of A’-isopropyl acrylamideas monomer, polyethylene glycol(PEG) as pore-forming agent and N,N-methylene-bis-acrylamide as crosslinking agent.The hydrogels were analyzed by Fourier transform infrared spectroscopy,and the influence of radiation doses on their swelling and thermal behaviors were studied.Their surface morphologies were examined by scanning electron microscopy.The results showed that PEG molecules only acted as pore-forming agent in the cross-linked polymerization.Their swelling ratios reduced with increasing radiation doses.The LCST was around 37℃,and varied little with the radiation doses.The frozen water content of PNIPAM/PEG6000 hydrogel reduced with increasing the radiation dose,and was greater than that of PN1PAM hydrogel at 15 kGy.Hydrogel macropores were prepared by PEG agent,and the hydrogels without PEG had a dense surface.The porous hydrogels are expected to be applied in the field of artificial intelligence material.展开更多
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effe...The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.展开更多
This paper investigates the effects of thermal radiation on the magnetohy- drodynamic (MHD) flow and heat transfer over a nonlinear shrinking porous sheet. The surface velocity of the shrinking sheet and the transve...This paper investigates the effects of thermal radiation on the magnetohy- drodynamic (MHD) flow and heat transfer over a nonlinear shrinking porous sheet. The surface velocity of the shrinking sheet and the transverse magnetic field are assumed to vary as a power function of the distance from the origin. The temperature dependent viscosity and the thermal conductivity are also assumed to vary as an inverse function and a linear function of the temperature, respectively. A generalized similarity transfor- mation is used to reduce the governing partial differential equations to their nonlinear coupled ordinary differential equations, and is solved numerically by using a finite difference scheme. The numerical results concern with the velocity and temperature profiles as well as the local skin-friction coefficient and the rate of the heat transfer at the porous sheet for different values of several physical parameters of interest.展开更多
文摘The simultaneous investigation on the parameters affecting the flow of electrically conductive fluids such as volumetric radiation,heat absorption,heat generation,and magnetic field(MF)is very vital due to its existence in various sectors of industry and engineering.The present research focuses on mathematical modeling to simulate the cooling of a hot component through power-law(PL)nanofluid convection flow.The temperature reduction of the hot component inside a two-dimensional(2D)inclined chamber with two different cold wall shapes is evaluated.The formulation of the problem is derived with the lattice Boltzmann method(LBM)by code writing via the FORTRAN language.The variables such as the radiation parameter(0–1),the Hartmann number(0–75),the heat absorption/generation coefficient(−5–5),the fluid behavioral index(0.8–1.2),the Rayleigh number(103–105),the imposed MF angle(0°–90°),the chamber inclination angle(−90°–90°),and the cavity cold wall shape(smooth and curved)are investigated.The findings indicate that the presence of radiation increases the mean Nusselt number value for the shear-thickening,Newtonian,and shear thinning fluids by about 6.2%,4%,and 2%,respectively.In most cases,the presence of nanoparticles improves the heat transfer(HT)rate,especially in the cases where thermal conduction dominates convection.There is the lowest cooling performance index and MF effect for the cavity placed at an angle of 90°.The application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research.
文摘In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.
基金the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia。
文摘This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.
文摘Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings,especially when inertial heating systems are used.The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system.A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled,allowing realistic simulations of the dynamic movement of the sun patch on a heated slab.The findings show that a period of discomfort as long as 8 h can occur,and persist far after the sunbeam exposure stops.During this period,the heating slab’s surface temperature,considered from an average point of view,can attain 34°C while the indoor temperature reaches 26°C.Simulations conducted using a previously developed model display a good fit with the measurements.
基金Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(No.RG-21-09-53)。
文摘The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
文摘The influence of radiative cooling on the unimolecular decay rates of free, hot clusters and molecules with unspecified excitation energies is quantified. Two different regimes, dedined by the magnitude of the energy of the photons emitted, are identified and the boundary between them is given. The boundary is determined in terms of the photon emission rate constants and thermal properties of the particles. Also the abundance spectra are calculated for the continuous cooling case, corresponding to small photon energies. The two regimes correspond to continuous cooling and single photon quenching of the unimolecular decay. The radiative effect can be parametrized by a redefinition of the time each individual cluster has available to undergo evaporation, expressed by an effective radiative time constant.
基金Supported by Major Program of Shanghai Science and Technology Commission(10DZ1200403,10dz1200905and11dz1211404)Shanghai Greening Administration(G102407)~~
文摘[Objective] The aim was to study on effects of greenbelts in different varieties on temperature drop under solar thermal radiation. [Method] In residential regions, effects of temperature reduction by five varieties of greenbelts (megaphanerophyte, dungarunga, shrub, herbaceous plant and bare land) and changing rules with days under the same solar thermal radiation were researched. [Result] Greenbelts' temperature changed with intensity of solar thermal radiation, among which greenbelt of megaphanerophyte absorbed, transfered and reflected thermal radiation through crown canopy. Temperature of underlying surface was reduced accordingly, where correlation between underlying surface's temperature and solar thermal radiation (R) was 0.156 and the temperature declined by 1.9 ℃. In contrast, correlation of temperature of underlying surface (of lawn) with solar thermal radiation (R) was as high as 0.820, but the temperature only declined by 0.6℃. [Conclusion] The established linear relationship between crown's temperature and air temperature actually provides references for temperature measurement of greenbelts at scale.
文摘In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.
基金supported by the Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China(GrantNo.51136001)
文摘In thermal radiation, taking heat flow as an extensive quantity and defining the potential as temperature T or the black body emissive power U will lead to two different definitions of radiation entransy flow and the corresponding principles for thermal radiation optimization. The two definitions of radiation entransy flow and the corresponding optimization prin ciples are compared in this paper. When the total heat flow is given, the optimization objectives of the extremum entransy dissipation principles (EEDPs) developed based on potentials T and U correspond to the minimum equivalent temperature difference and the minimum equivalent blackbody emissive power difference respectively. The physical meaning of the definition based on potential U is clearer than that based on potential T, but the latter one can be used for the coupled heat transfer optimization problem while the former one cannot. The extremum entropy generation principle (EEGP) for thermal radiation is also derived, which includes the minimum entropy generation principle for thermal radiation. When the radiation heat flow is prescribed, the EEGP reveals that the minimum entropy generation leads to the minimum equivalent thermodynamic potential difference, which is not the expected objective in heat transfer. Therefore, the minimum entropy generation is not always appropriate for thermal radiation optimization. Finally, three thermal radiation optimization examples are discussed, and the results show that the difference in optimization objective between the EEDPs and the EEGP leads to the difference between the optimization results. The EEDP based on potential T is more useful in practical application since its optimization objective is usually consistent with the expected one.
基金funding this work through research groups program under grant number R.G.P-59/40.
文摘This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles.
文摘An analysis of the heat transfer for a boundary layer forced convective flow past a moving permeable flat surface parallel to a moving fluid is presented. Prescribed surface temperature at the boundary is considered, A thermal radiation term in the energy equation is considered. The similarity solutions for the problem are obtained and the reduced ordinary differential equations are solved numerically. To support the validity of the numerical results, a comparison is made with the available results for some particular cases of this study. Dual solutions exist when the surface and the fluid move in the opposite directions.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019QA018)the Advanced Research Project(No.61402060301).
文摘Accurate aerodynamic heating prediction is of great significance to current manned space flight and deep space exploration missions.The temperature in the shock layer surrounding the reentry vehicle can reach up to 10,000 K and result in remarkable thermochemical nonequilibrium,as well as considerable radiative heat transfer.In general,high-temperature flow simulations coupled with thermal radiation require appropriate numerical schemes and physical models.In this paper,the equations governing hypersonic nonequilibrium flow,based on a three-temperature model combined with a thermal radiation solving approach,are used to investigate the radiation effects in the reentry shock layer.An axisymmetric spherical case shows that coupling the flow-field simulation with radiation has a scarce influence on the convective heating prediction,but has some impact on the radiative heating calculation.In particular,for the Apollo capsule reentry,both the absorption coefficient and incident radiation are remarkable inside the shock layer.The radiative heating maximum reaches nearly 38%of that of the convective heating making a considerable contribution to the total aerodynamic heating.These results indicate that in the hypersonic regime,in order to account for the total heating,it is necessary to simulate the high-temperature thermochemical nonequilibrium flows coupled with thermal radiation.
基金financial support through the Junior Research Fellowship (JRF) (No. 21/06/2015(i)EU-V)
文摘The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system via the Bejan number is studied extensively. The governing partial differential equations are converted by using the similarity transformations into a set of coupled ordinary differential equations. The set of these converted equations is solved by using the differential transform method (DTM). The entropy generation in terms of the Bejan number, the coefficient of skin-friction, and the heat transfer rate is furthermore investigated under the effects of various physical parameters of interest. The present study shows that the Bejan number, the velocity and thermal profiles, and the rate of heat transfer decrease with a rise in the Deborah number De while the skin-friction coefficient increases. It is also observed that the entropy generation due to frictional forces is higher than that due to thermal effects. Thus, the study bears the potential application in powder technology as well as in biomedical engineering.
基金supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,Saudi Arabia (No. 2-135/HiCi)
文摘This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.
文摘This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.
基金Supported by the Key Science and Technology Project of Henan Province(No.102101210100)the Natural Science Foundation ofHenan Province(No. 2011 B430023)
文摘In this study,a series of porous intelligent hydrogels were synthesized by radiation exhibiting the lower critical solution temperature(LCST) and fast response involving a combination of A’-isopropyl acrylamideas monomer, polyethylene glycol(PEG) as pore-forming agent and N,N-methylene-bis-acrylamide as crosslinking agent.The hydrogels were analyzed by Fourier transform infrared spectroscopy,and the influence of radiation doses on their swelling and thermal behaviors were studied.Their surface morphologies were examined by scanning electron microscopy.The results showed that PEG molecules only acted as pore-forming agent in the cross-linked polymerization.Their swelling ratios reduced with increasing radiation doses.The LCST was around 37℃,and varied little with the radiation doses.The frozen water content of PNIPAM/PEG6000 hydrogel reduced with increasing the radiation dose,and was greater than that of PN1PAM hydrogel at 15 kGy.Hydrogel macropores were prepared by PEG agent,and the hydrogels without PEG had a dense surface.The porous hydrogels are expected to be applied in the field of artificial intelligence material.
文摘The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.
基金Project supported by the Department of Science and Technology, Government of India (DST-GOI)Funded Promotion of University Research and Scientific Excellence (PURSE) Programme of Jadavpur University (No. SR/S9/Z-23/2008/5)
文摘This paper investigates the effects of thermal radiation on the magnetohy- drodynamic (MHD) flow and heat transfer over a nonlinear shrinking porous sheet. The surface velocity of the shrinking sheet and the transverse magnetic field are assumed to vary as a power function of the distance from the origin. The temperature dependent viscosity and the thermal conductivity are also assumed to vary as an inverse function and a linear function of the temperature, respectively. A generalized similarity transfor- mation is used to reduce the governing partial differential equations to their nonlinear coupled ordinary differential equations, and is solved numerically by using a finite difference scheme. The numerical results concern with the velocity and temperature profiles as well as the local skin-friction coefficient and the rate of the heat transfer at the porous sheet for different values of several physical parameters of interest.