The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabi...The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.展开更多
In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be o...In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.展开更多
Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well a...Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.展开更多
Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expec...Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expected, based on some previous experimental measurements) the velocity flow field to be far from axisymmetric. Moreover, the center of the swirling airflow was found to be at some radial distance away from the physical centerline of the flame tube. Since it was suspected that the two electrodes just upstream of the retention ring of the burner might be responsible for this flow distortion, additional CFD simulations were then carried out for the cases of no electrodes and 4-electrodes. The results clearly show that all flow distortions (velocity deviations from axisymmetric value) vanish when no electrodes are present and that the flow distortions are reduced by a factor of 2 when two additional dummy electrodes (for a total of 4 electrodes) are included in the burner design. Furthermore, for the 4-electrode case, the eccentricity of the swirling airflow is reduced by almost a factor of 3 as compared to the base design case of 2-electrodes.展开更多
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ...Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.展开更多
Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only real...Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.展开更多
Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An...Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors. The results obtained for K 108-767, K 108-012, 37.03.9595, 16.83.0310 types are presented.展开更多
In order to develop a burner with uniform temperature field,the combustion characteristics and thermal performance of partially premixed methane/air jet flames were experimentally studied by using micro jet array burn...In order to develop a burner with uniform temperature field,the combustion characteristics and thermal performance of partially premixed methane/air jet flames were experimentally studied by using micro jet array burners.The circular tubes of 1.0-mm inner diameter and 1.5-mm outer diameter were used as nozzles.The effects of nozzle spacing and equivalence ratio on flame phenomenology,temperature distribution and pollutant emissions were respectively investigated by camera photography,thermocouple measurement and sampling analysis.Results show that there are two clean flame patterns:clean merged-flame and clean non-merging flames.The flame patterns depend on the strength of flame interaction,the equivalence ratio of the mixture and the quantity of air entrainment through the gap between nozzles.The burners with small nozzle spacing such as 2 mm and 2.5 mm tend to produce fully merged flame with low equivalence ratio limit and the corresponding temperature fields are very uniform with fluctuations less than 0.3%,but a small increase in equivalence ratio will lead to rapid deterioration of combustion property.The burner with a medium spacing of 3 mm can produce partially merged flame in a wide equivalence ratio range with low emissions,and the temperature fluctuation can be less than 0.5%(<7 K)in the optimal region.The burner with a large spacing of 4 mm will basically form independent array flames with the largest temperature fluctuation over 1%,while it can achieve clean combustion under high equivalence ratio due to large air entrainment.Comprehensive analysis shows that the micro jet array burner with medium nozzle spacing of 3 mm has the best combustion characteristics and thermal performance.展开更多
According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was establi...According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.展开更多
The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and...The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.展开更多
Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied cat...Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> and Pd/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> disc burners were located in the combustion domain and the experiments were accomplished under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (<i><span style="white-space:nowrap;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">ø</span></span></i>) of 0.75 and 0.25, respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners w<span style="white-space:normal;font-family:;" "="">as</span><span style="white-space:normal;font-family:;" "=""> scrutinized via measuring the mean temperature profiles in the radial direction at different discrete axial locations along with the flames. The RSM and ANN methods investigated the effect of the two operating parameters namely (<i>r</i>), the radial distance from the center line of the flame, and (<i>x</i>), axial distance along with the flame over the disc, on the measured temperature of the flames and predicted the corresponding temperatures beside predicting the maximum temperature and the corresponding input process variables. A three</span><span style="white-space:normal;font-family:;" "="">-</span><span style="white-space:normal;font-family:;" "="">layered Feed Forward Neural Network was developed in conjugation with the hyperbolic tangent sigmoid (tansig) transfer function and an optimized topology of 2:10:1 (input neurons:hidden neurons:output neurons). Also the ANN method has been exploited to illustrate </span><span style="white-space:normal;font-family:;" "="">the </span><span style="white-space:normal;font-family:;" "="">effects of coded <i>R</i> and <i>X</i> input variables on the response in the three and two dimensions and to locate the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of & F_Ratio are 0.9181</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9809 & 634.5</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 3528.8 for RSM method compared to 0.9857</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9951 & 7636.4</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 24</span><span style="white-space:normal;font-family:;" "="">,</span><span style="white-space:normal;font-family:;" "="">028.4 for ANN method beside lower values </span><span style="white-space:normal;font-family:;" "="">for error analysis terms.</span>展开更多
Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.3302 were prepared to investigate methane selective catalytic reduction (SCR) of NO. The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO a...Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.3302 were prepared to investigate methane selective catalytic reduction (SCR) of NO. The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO and CH4 can be converted completely at 450℃. Meanwhile, NO and CH4 can be converted completely when there exists excess oxygen. The Pt/Ce0.67Zr0.33O2 catalyst were further investigated by using methane as reducing agent to SCR NO in a novel equipment which combined the CH4 selective catalytic reduction of NO with methane combustion. The result shows that the catalyst is high active and the novel equipment is very effective. The conversion of NO is above 92% under the conditions used in this work. The prepared burner and catalysts have great potential for application.展开更多
The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- ti...The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif- ferent OjN2/CO2 molar ratios: 21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that 02 en- richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30% 02 and 70% CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain 02 enrichment and oxy-coal combustion conditions against the air-coal combustion.展开更多
A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and tempera...A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.展开更多
A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distributi...A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.展开更多
This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to va...This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.展开更多
The influence of oxygen supply mode on the KIVCET (a Russian acronym for flash?cyclone?oxygen?electric?smelting) process was investigated using numerical simulation. The mass rate ratio (MRR) of central oxygen to late...The influence of oxygen supply mode on the KIVCET (a Russian acronym for flash?cyclone?oxygen?electric?smelting) process was investigated using numerical simulation. The mass rate ratio (MRR) of central oxygen to lateral oxygen of the central jet distributor (CJD) burner was defined to express the oxygen supply mode, and the KIVCET process with an MRR ranging from 0.09 to 0.39 was simulated. The results show that there are four efficient reaction regions that correspond to four CJD burners. A higher central oxygen flow improves the mixing between particles and oxygen, thus enhancing reactions and shortening the reaction regions. However, a higher dust rate is induced due to the spread of the particle columns. The optimal MRR for a KIVCET furnace with a smelting capacity of 50000 kg/h is suggested to be 0.31. In this case, the chemical reactions associated with the feed are completed with an acceptable dust rate.展开更多
文摘The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.
基金supported by The Scientific and Technological Research Council of Turkey(TUBITAK,Project number:114M116)and MIMSAN AS
文摘In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.
基金Sponsored by the Ministry of Education of China via the 2004 Year New Century Excellent Talents in University (Grant No NCET-04-0328)Hei-longjiang Province via 2005 Year Key Projects (Grant No GC05A314)
文摘Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.
文摘Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expected, based on some previous experimental measurements) the velocity flow field to be far from axisymmetric. Moreover, the center of the swirling airflow was found to be at some radial distance away from the physical centerline of the flame tube. Since it was suspected that the two electrodes just upstream of the retention ring of the burner might be responsible for this flow distortion, additional CFD simulations were then carried out for the cases of no electrodes and 4-electrodes. The results clearly show that all flow distortions (velocity deviations from axisymmetric value) vanish when no electrodes are present and that the flow distortions are reduced by a factor of 2 when two additional dummy electrodes (for a total of 4 electrodes) are included in the burner design. Furthermore, for the 4-electrode case, the eccentricity of the swirling airflow is reduced by almost a factor of 3 as compared to the base design case of 2-electrodes.
基金the Hindustan Institute of Technology and Science for their support.
文摘Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.
基金funded by the American University in Cairo research grants(Project number SSE-MENG-M.M.-FY18-FY19-FY20-RG(1-18)–2017-Nov-11-17-52-02).
文摘Biogas is a renewable and clean energy source that plays an important role in the current environment of lowcarbon transition.If high-content CO_(2) in biogas can be separated,transformed,and utilized,it not only realizes high-value utilization of biogas but also promotes carbon reduction in the biogas field.To improve the combustion stability of biogas,an inhomogeneous,partially premixed stratified(IPPS)combustion model was adopted in this study.The thermal flame structure and stability were investigated for a wide range of mixture inhomogeneities,turbulence levels,CO_(2) concentrations,air-to-fuel velocity ratios,and combustion energies in a concentric flow slot burner(CFSB).A fine-wire thermocouple is used to resolve the thermal flame structure.The flame size was reduced by increasing the CO_(2) concentration and the flames became lighter blue.The flame temperature also decreased with increase in CO_(2) concentration.Flame stability was reduced by increasing the CO_(2) concentration.However,at a certain level of mixture inhomogeneity,the concentration of CO_(2) in the IPPS mode did not affect the stability.Accordingly,the IPPS mode of combustion should be suitable for the combustion and stabilization of biogas.This should support the design of highly stabilized biogas turbulent flames independent of CO_(2) concentration.The data show that the lower stability conditions are partially due to the change in fuel combustion energy,which is characterized by the Wobbe index(WI).In addition,at a certain level of mixture inhomogeneity,the effect of the WI on flame stability becomes dominant.
文摘Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process. Diffraction method is one of the most useful measuring procedures in this case. An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors. The results obtained for K 108-767, K 108-012, 37.03.9595, 16.83.0310 types are presented.
基金This work was supported by the National Natural Science Foundation of China(NO.51176193)Key R&D Projects of Guangdong Province(NO.2020B1111360004)Self-financing Science and Technology Projects in Foshan(NO.2020001004571).
文摘In order to develop a burner with uniform temperature field,the combustion characteristics and thermal performance of partially premixed methane/air jet flames were experimentally studied by using micro jet array burners.The circular tubes of 1.0-mm inner diameter and 1.5-mm outer diameter were used as nozzles.The effects of nozzle spacing and equivalence ratio on flame phenomenology,temperature distribution and pollutant emissions were respectively investigated by camera photography,thermocouple measurement and sampling analysis.Results show that there are two clean flame patterns:clean merged-flame and clean non-merging flames.The flame patterns depend on the strength of flame interaction,the equivalence ratio of the mixture and the quantity of air entrainment through the gap between nozzles.The burners with small nozzle spacing such as 2 mm and 2.5 mm tend to produce fully merged flame with low equivalence ratio limit and the corresponding temperature fields are very uniform with fluctuations less than 0.3%,but a small increase in equivalence ratio will lead to rapid deterioration of combustion property.The burner with a medium spacing of 3 mm can produce partially merged flame in a wide equivalence ratio range with low emissions,and the temperature fluctuation can be less than 0.5%(<7 K)in the optimal region.The burner with a large spacing of 4 mm will basically form independent array flames with the largest temperature fluctuation over 1%,while it can achieve clean combustion under high equivalence ratio due to large air entrainment.Comprehensive analysis shows that the micro jet array burner with medium nozzle spacing of 3 mm has the best combustion characteristics and thermal performance.
基金Project(2009bsxt022)supported by the Dissertation Innovation Foundation of Central South University,ChinaProject(07JJ4016)supported by Natural Science Foundation of Hunan Province,ChinaProject(U0937604)supported by the National Natural Science Foundation of China
文摘According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.
文摘The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.
文摘Modeling, predictive and generalization capabilities of response surface methodology (RSM) and artificial neural network (ANN) have been performed to assess the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> and Pd/<i>γ</i>Al<sub>2</sub>O<sub>3</sub> disc burners were located in the combustion domain and the experiments were accomplished under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (<i><span style="white-space:nowrap;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">ø</span></span></i>) of 0.75 and 0.25, respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners w<span style="white-space:normal;font-family:;" "="">as</span><span style="white-space:normal;font-family:;" "=""> scrutinized via measuring the mean temperature profiles in the radial direction at different discrete axial locations along with the flames. The RSM and ANN methods investigated the effect of the two operating parameters namely (<i>r</i>), the radial distance from the center line of the flame, and (<i>x</i>), axial distance along with the flame over the disc, on the measured temperature of the flames and predicted the corresponding temperatures beside predicting the maximum temperature and the corresponding input process variables. A three</span><span style="white-space:normal;font-family:;" "="">-</span><span style="white-space:normal;font-family:;" "="">layered Feed Forward Neural Network was developed in conjugation with the hyperbolic tangent sigmoid (tansig) transfer function and an optimized topology of 2:10:1 (input neurons:hidden neurons:output neurons). Also the ANN method has been exploited to illustrate </span><span style="white-space:normal;font-family:;" "="">the </span><span style="white-space:normal;font-family:;" "="">effects of coded <i>R</i> and <i>X</i> input variables on the response in the three and two dimensions and to locate the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of & F_Ratio are 0.9181</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9809 & 634.5</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 3528.8 for RSM method compared to 0.9857</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 0.9951 & 7636.4</span><span style="white-space:normal;font-family:;" "=""> </span><span style="white-space:normal;font-family:;" "="">- 24</span><span style="white-space:normal;font-family:;" "="">,</span><span style="white-space:normal;font-family:;" "="">028.4 for ANN method beside lower values </span><span style="white-space:normal;font-family:;" "="">for error analysis terms.</span>
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2006AA06Z347)the NationalNatural Science Foundation of China (20773090).
文摘Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.3302 were prepared to investigate methane selective catalytic reduction (SCR) of NO. The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO and CH4 can be converted completely at 450℃. Meanwhile, NO and CH4 can be converted completely when there exists excess oxygen. The Pt/Ce0.67Zr0.33O2 catalyst were further investigated by using methane as reducing agent to SCR NO in a novel equipment which combined the CH4 selective catalytic reduction of NO with methane combustion. The result shows that the catalyst is high active and the novel equipment is very effective. The conversion of NO is above 92% under the conditions used in this work. The prepared burner and catalysts have great potential for application.
基金Supported by the Chinese Ministry of Science and Technology Project(2011DFA60390)The National High Technology Research and Development Program of China(2007AA05Z303)
文摘The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif- ferent OjN2/CO2 molar ratios: 21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that 02 en- richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30% 02 and 70% CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain 02 enrichment and oxy-coal combustion conditions against the air-coal combustion.
文摘A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.
文摘A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.
基金Supported by the National Natural Science Foundation of China (50806005,50736002,61072005)
文摘This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.
基金Project(61621062)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The influence of oxygen supply mode on the KIVCET (a Russian acronym for flash?cyclone?oxygen?electric?smelting) process was investigated using numerical simulation. The mass rate ratio (MRR) of central oxygen to lateral oxygen of the central jet distributor (CJD) burner was defined to express the oxygen supply mode, and the KIVCET process with an MRR ranging from 0.09 to 0.39 was simulated. The results show that there are four efficient reaction regions that correspond to four CJD burners. A higher central oxygen flow improves the mixing between particles and oxygen, thus enhancing reactions and shortening the reaction regions. However, a higher dust rate is induced due to the spread of the particle columns. The optimal MRR for a KIVCET furnace with a smelting capacity of 50000 kg/h is suggested to be 0.31. In this case, the chemical reactions associated with the feed are completed with an acceptable dust rate.