In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes ...In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes a quality-aware cross-layer scheduling scheme to achieve unequal error control for each Latency-constraint Frame Set (LFS) of a video stream. After a network-layer agent at base station firstly utilizes the network-layer packet scheduling to provide packet-granularity importance classifi-cation for the current LFS, a link-layer agent at base station further utilizes the Radio-Link-Unit (RLU) scheduling to implement finer selective retransmission of the current LFS. Under scheduling delay and bandwidth constraints, the proposed scheme can be aware of the application-layer quality and time-varying channel conditions, and hence burst errors can simply be shifted to lower-priority transmission units in the current LFS. Simulation results demonstrate that the proposed scheme has strong robustness against burst errors, and thus improves the overall received quality of the video stream over wireless channels.展开更多
In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m ...In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m × s matrices with entries from the finite ring Zq, generalized the classical Lee metric [Lee, C. Y.: Some properties of non-binary error correcting codes. IEEE Trans. Inform. Theory, IT-4, 77- 82 (1958)] and array RT-metric [Rosenbloom, M. Y., Tsfasman, M. A.: Codes for m-metric. Prob. Inf. Transm., 33, 45-52 (1997)] and named this pseudo-metric as the Generalized-Lee-RT-Pseudo-Metric (or the GLRTP-Metric). In this paper, we obtain some lower bounds for two-dimensional array codes correcting CT burst array errors [Jain, S.: CT bursts from classical to array coding. Discrete Math., 308-309, 1489-1499 (2008)] with weight constraints under the GLRTP-metric.展开更多
A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a ran...A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a range profile is thoroughly analyzed, and based on which precision re- quirement is developed for motion compensation. By studying the time domain correlation and the rule based on the least burst error, a motion compensation algorithm which satisfies the project requirement is presented, and the cyber-emulation confirms the conclusion. At last the processor is designed by using DSP devices to realize motion compensation and target recognition.展开更多
For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correct...For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.展开更多
文摘In the case of video streaming over wireless channels, burst errors may lead to serious video quality degradation. By jointly exploiting the scheduling mechanism on different communication layers, this paper proposes a quality-aware cross-layer scheduling scheme to achieve unequal error control for each Latency-constraint Frame Set (LFS) of a video stream. After a network-layer agent at base station firstly utilizes the network-layer packet scheduling to provide packet-granularity importance classifi-cation for the current LFS, a link-layer agent at base station further utilizes the Radio-Link-Unit (RLU) scheduling to implement finer selective retransmission of the current LFS. Under scheduling delay and bandwidth constraints, the proposed scheme can be aware of the application-layer quality and time-varying channel conditions, and hence burst errors can simply be shifted to lower-priority transmission units in the current LFS. Simulation results demonstrate that the proposed scheme has strong robustness against burst errors, and thus improves the overall received quality of the video stream over wireless channels.
文摘In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m × s matrices with entries from the finite ring Zq, generalized the classical Lee metric [Lee, C. Y.: Some properties of non-binary error correcting codes. IEEE Trans. Inform. Theory, IT-4, 77- 82 (1958)] and array RT-metric [Rosenbloom, M. Y., Tsfasman, M. A.: Codes for m-metric. Prob. Inf. Transm., 33, 45-52 (1997)] and named this pseudo-metric as the Generalized-Lee-RT-Pseudo-Metric (or the GLRTP-Metric). In this paper, we obtain some lower bounds for two-dimensional array codes correcting CT burst array errors [Jain, S.: CT bursts from classical to array coding. Discrete Math., 308-309, 1489-1499 (2008)] with weight constraints under the GLRTP-metric.
基金Supported by National Natural Science Foundation of China (No.60402032).
文摘A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a range profile is thoroughly analyzed, and based on which precision re- quirement is developed for motion compensation. By studying the time domain correlation and the rule based on the least burst error, a motion compensation algorithm which satisfies the project requirement is presented, and the cyber-emulation confirms the conclusion. At last the processor is designed by using DSP devices to realize motion compensation and target recognition.
文摘For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.