期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Integrated Performance Measures for Bus Rapid Transit System and Traffic Signal Systems Using Trajectory Data
1
作者 Jijo Kulathintekizhakethil Mathew Howell Li +2 位作者 Enrique Saldivar-Carrranza Matthew Duffy Darcy Michael Bullock 《Journal of Transportation Technologies》 2022年第4期833-860,共28页
Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, ... Bus rapid transit (BRT) systems have been implemented in many cities over the past two decades. Widespread adoption of General Transit Feed Specification (GTFS), the deployment of high-fidelity bus GPS data tracking, and anonymized high-fidelity connected vehicle data from private vehicles have provided new opportunities for performance measures that can be used by both transit agencies and traffic signal system operators. This paper describes the use of trajectory-based data to develop performance measures for a BRT system in Indianapolis, Indiana. Over 3 million data records during the 3-month period between March and May 2022 are analyzed to develop visualizations and performance metrics. A methodology to estimate the average delay and schedule adherence is presented along a route comprised of 74 signals and 28 bus stations. Additionally, this research demonstrates how these performance measures can be used to evaluate dedicated and non-dedicated bus lanes with general traffic. Travel times and reliability of buses are compared with nearly 30 million private vehicle trips. Results show that median travel time for buses on dedicated bi-directional lanes is within one minute of general traffic and during peak periods the buses are often faster. Schedule adherence was observed to be more challenging, with approximately 3% of buses arriving within 1 minute on average during the 5AM hour and 5% of buses arriving 6 - 9 minutes late during the 5PM hour. The framework and performance measures presented in this research provide agencies and transportation professionals with tools to identify opportunities for adjustments and to justify investment decisions. 展开更多
关键词 Connected Vehicle Trajectory bus rapid transit Performance Traffic Signal Retiming Schedules
下载PDF
Users’ Perception on Operation and Performance of Public Transport Systems in African Developing Countries: The Case of Bus Rapid Transit (BRT) in Dar es Salaam City, Tanzania
2
作者 Emmanuel Elifadhili Mchome Uwezo Wilbard Nzoya 《Open Journal of Applied Sciences》 2023年第12期2408-2420,共13页
Public transport system has been a means of addressing transportation challenges in urban areas, such as traffic congestion, traffic jam and long travel time in cities worldwide. Transportation in Africa is unique in ... Public transport system has been a means of addressing transportation challenges in urban areas, such as traffic congestion, traffic jam and long travel time in cities worldwide. Transportation in Africa is unique in that it has the least developed public transport systems in the world, while also being one of the fastest urbanizing continents. Bus Rapid Transit being one of the public transport systems was introduced in Africa in 2008 as a means to provide solution on urban transportation challenges. Despite of public transport being the main means of transport in African developing countries, there have been a number of challenges that affects efficiency of performance of the system and makes its users uncomfortable. Therefore, the study aimed at exploring the setbacks or challenges associated with operation and performance of the BRT system in the African developing countries and address them. The study employed mixed methods research design that integrates both qualitative and quantitative data collection methods and analysis. The study findings reveal that, there is an improvement on the perspectives of the commuters on public transport after introduction of BRT system. However, some challenges such as long waiting time, passengers overcrowding during peak hours, as well as safety and security can slowly change the perspective of the commuters. Therefore, to address these challenges it is recommended to reduce the long waiting time and improve accessibility by introduction of passenger information displays (bus information system) and automated fare collection system;reduce travel time by introduction of bus priority signal;and improve safety and security by introduction of signage and CCTV Camera within the bus and bus stops. 展开更多
关键词 bus rapid transit Commuters’ Perception Public Transport system
下载PDF
Modeling customer satisfaction for bus rapid transit in Changzhou, China 被引量:4
3
作者 霍月英 李文权 陈茜 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期233-239,共7页
This paper aims to develop a customer satisfaction model for bus rapid transit (BRT). Both the socio-economic and travel characteristics of passengers were considered to be independent variables. Changzhou BRT was t... This paper aims to develop a customer satisfaction model for bus rapid transit (BRT). Both the socio-economic and travel characteristics of passengers were considered to be independent variables. Changzhou BRT was taken as an example and on which on-board surveys were conducted to collect data. Ordinal logistic regression (OLR) was used as the modeling approach. The general OLR-based procedure for modeling customer satisfaction is proposed and based on which the customer satisfaction model of Changzhou BRT is developed. Some important findings are concluded: Waiting sub-journey affects customer satisfaction the most, riding sub- journey comes second and arriving station sub-journey has relatively fewer effects. The availability of shelter and benches at stations imposes heavy influence on customer satisfaction. Passengers' socio-economic characteristics have heavy impact on customer satisfaction. 展开更多
关键词 customer satisfaction bus rapid transit MODELING socio-economic characteristics trip characteristics
下载PDF
Impact of viscosity modifier on asphalt properties used for bus rapid transit lanes in Chengdu 被引量:5
4
作者 Mouhamed Bayane Bouraima Xiaohua Zhang +1 位作者 Shuiwen Zhou Yanjun Qiu 《Journal of Modern Transportation》 2017年第3期185-193,共9页
In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super... In order to find the effect of different viscosity modifier dosages on asphalt binder's performance in bus rapid transit lanes in the city of Chengdu, three different viscosity modifiers were analyzed: TAFPACK-super (TPS), high-viscosity additive (HVA) and road-science- technology (RST), and four different asphalt binders were investigated through laboratory experiments. The percent- ages of the viscosity modifiers used were: TPS (0%, 8%, 10%, 12%, 14% and 16%) and RST and HVA (8% and 12%) depending on the type of asphalt binder. Technical indicators of modifier asphalt were tested through con- ventional and unconventional binder tests. It has been found out that only a percentage greater than or equal to 14% TPS is reasonable to achieve the requirement set by 20,000 Pa. s for the 60℃ dynamic viscosity on local #70 grade asphalt. The results indicate that conventional bin- ders did not meet the requirements of the 60℃ dynamic viscosity when 12% of TPS or HVA modifiers were used. In addition, the B-type styrene-butadienne-styrene (SBS) modified asphalt binder has better viscosity balance than the A-type SBS modified when 8% of each of the three different kinds of viscosity modifiers is used. Therefore, the B-type modified SBS thus appears to be a suitable choice in asphalt mixtures for bus rapid transit lane with the 60℃ dynamic viscosity. 展开更多
关键词 High-viscosity modifier Physical properties 60℃ dynamic viscosity bus rapid transit lane
下载PDF
Dwell time estimation models for bus rapid transit stations
5
作者 Fazhi LI Zhengyu DUAN Dongyuan YANG 《Journal of Modern Transportation》 2012年第3期168-177,共10页
Bus rapid transit (BRT) systems have been shown to have many advantages including affordability, high capacity vehicles, and reliable service. Due to these attractive advantages, many cities throughout the world are... Bus rapid transit (BRT) systems have been shown to have many advantages including affordability, high capacity vehicles, and reliable service. Due to these attractive advantages, many cities throughout the world are in the process of planning the construction of BRT systems. To improve the performance of BRT systems, many researchers study BRT operation and control, which include the study of dwell times at bus/BRT stations. To ensure the effectiveness of real-time control which aims to avoid bus/BRT vehicles congestion, accurate dwell time models are needed. We develop our models using data from a BRT vehicle survey conducted in Changzhou, China, where BRT lines are built along passenger corridors, and BRT stations are enclosed like light rails. This means that interactions between passengers traveling on the BRT system are more frequent than those in traditional transit system who use platform stations. We statistically analyze the BRT vehicle survey data, and based on this analysis, we are able to make the following conclusions: ( I ) The delay time per passenger at a BRT station is less than that at a non-BRT station, which implies that BRT stations are efficient in the sense that they are able to move passengers quickly. (II) The dwell time follows a logarithmic normal distribution with a mean of 2.56 and a variance of 0.53. (III) The greater the number of BRT lines serviced by a station, the longer the dwell time is. (IV) Daily travel demands are highest during the morning peak interval where the dwell time, the number of passengers boarding and alighting and the number of passengers on vehicles reach their maximum values. (V) The dwell time is highly positively correlated with the total number of passengers boarding and alighting. (VI) The delay per passenger is negatively correlated with the total number of passengers boarding and alighting. We propose two dwell time models for the BRT station. The first proposed model is a linear model while the second is nonlinear. We introduce the conflict between passengers boarding and alighting into our models. Finally, by comparing our models with the models of Rajbhandari and Chien et al., and TCQSM (Transit Capacity and Quality of Service Manual), we conclude that the proposed nonlinear model can better predict the dwell time at BRT stations. 展开更多
关键词 dwell time model conflict factor bus rapid transit (BRT) station
下载PDF
Critical evaluation of transit policies in Lima,Peru;resilience of rail rapid transit(Metro)in a developing country
6
作者 Manuel Jose Martinez 《Green Energy and Intelligent Transportation》 2024年第5期23-33,共11页
This paper evaluates rail transit within the context of the transit policies implemented in Lima,Peru.First it reviews the implementation of rapid transit,and bus reform.Secondly,it evaluates the outcomes of such poli... This paper evaluates rail transit within the context of the transit policies implemented in Lima,Peru.First it reviews the implementation of rapid transit,and bus reform.Secondly,it evaluates the outcomes of such policies by using Total Factor Productivity for policy effectiveness,Data Envelopment Analysis for rapid transit performance,and Generalized Cost of Travel for improvements.This paper finds that implementation failed in enforcing key requirements for rail transit regarding penetration of CBD and short transfers to bus transit;and that the basic assumptions of bus reform did not hold regarding bus oversupply,bus congestion or bus pollution.This paper also finds that outcomes of policies failed dramatically in achieving the planning goals;however,rail transit(Metro)shows high level of resilience in serving large ridership at high speed.On the other hand,bus reform was associated with a disproportionate increase of motorization,well over the effect of income growth or car attractiveness,and more related to the excessive reduction of bus transit capacity ill-advised from unproved bus reform assumptions.This paper recommends expanding rail rapid transit due to its intensive use of green renewable energy and its potential of demand growth if combined with modern Intelligent Transportation services,but this opportunity can be wasted without the proposed policy constraint to achieve lower Generalized Cost of Travel at any governmental intervention for bus reform,instead of just reducing bus transit capacity as implemented.Finally,this paper recommends government to government contracts to build rail transit and to enforce proper planning. 展开更多
关键词 Public transportation bus rapid transit Rail transportation bus transit Developing countries Resilient
原文传递
Combinations of Transportation Policies to Promote BRT Usage Using Artificial Society Model
7
作者 Hiroaki Inokuchi 《Journal of Traffic and Transportation Engineering》 2024年第1期1-10,共10页
Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip ma... Various transportation systems have been developed in recent years.In this study,an artificial society model is developed to examine the combination of transportation policies in urban areas.In this model,each trip maker selects the primary and terminal transportation modes.An artificial society model is applied to the southeastern region of Osaka City,Japan.The effects of introducing BRT(bus rapid transit,primary transportation)and on-demand buses(terminal transportation)are investigated.The results confirm that BRT is used by a certain number of users.An increase in the use of BRT will increase the amount of walking,thus resulting in a healthy city.However,on-demand buses are rarely used as terminal transportation.Additionally,the development of bicycle parking stations near BRT stops is shown to be effective in the northern section of the BRT route. 展开更多
关键词 Artificial society model bus rapid transit on-demand bus transportation policy.
下载PDF
Development of New Modality Municipal Public Transportation for Guangzhou——Group Rapid Transit System as Supplementary Linkage from Guangzhou City Center to its Eastern Tourism Zone
8
作者 Ru-jiang Zhao Wung Hee Moh 《Frontiers of Engineering Management》 2015年第4期378-390,共13页
As one of the primary business centers of China, Guangzhou has been undergoing rapid growth and expansion. Over the past decade, the Guangzhou Municipality Government has significantly upgraded its transport infrastru... As one of the primary business centers of China, Guangzhou has been undergoing rapid growth and expansion. Over the past decade, the Guangzhou Municipality Government has significantly upgraded its transport infrastructure, especially with the highly beneficial expansion of its Subway Mass Rapid Transit(MRT) system.Positive steps have also been taken to continue planning the construction of new roads, a Bus Rapid Transit(BRT)system and other transportation facilities. Further administrative and regulatory measures have also been implemented to control the situation, such as the banning of motorcycles from the central city area and the limitation of new automobile registrations. However, Guangzhou continues to face serious challenges of traffic congestion in and around the city center owing to further intensification of its population with economic growth. The need to ease Guangzhou's stretched public transportation resources,and at the same time to support the realization of its"Eastward Advance" strategy, presents a unique challenge and opportunity to develop an advanced high-efficiency public transportation modality for Guangzhou, viz. the Group Rapid Transit(GRT) involving the use of automation-guided(driverless) smart-vehicles. This paper outlines the PRT/GRT(PRT: Personal Rapid Transit) smart-vehicle modality and also puts forth a proposal of Guangzhou's first GRT route as the city's first dedicated transportation link to the scenic landscape of the Eastern Tourism Zone.This GRT route will help in diffusing the city's traffic congestion as well as support the effectuation of Guangzhou's "Eastern Expansion" strategy, supplementing the ongoing expansion of the Guangzhou Municipality's subway MRT networks. 展开更多
关键词 public transportation system innovative city transportation Subway Mass rapid transit(MRT) bus rapid transit(BRT) Group rapid transit(GRT) Personal rapid transit(PRT)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部