Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized tr...Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized transport, citing mobility and safety concerns, exacerbated by insufficient pedestrian infrastructure. This study examines the motivations behind this reliance on motorized vehicles, particularly motorcycles, in Hanoi. Findings reveal safety and convenience as primary factors driving motorized transport use, especially for accessing bus stations. Economic incentives could promote non-motorized travel and public transport adoption. Policy implications highlight the importance of addressing economic factors and improving access infrastructure to manage motorized vehicle reliance and foster sustainable urban mobility in Hanoi.展开更多
To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the loca...To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the location between the bus stop and the access upstream or downstream,the capacity models on the expressway are developed for four cases. The results show that there are no significant differences in the capacity among four cases when the bus arrival rate is less than 60 veh / h and the car volume at the entrance and exit is less than 200 pcu / h. As the bus arrival rate and the car volume at the entrance and exit increase,the bus stops at downstream of an entrance and upstream of an exit have remarkable effect on the capacity. The increasing of berth number of the bus stop has a positive effect on the capacities of four cases.展开更多
To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous ...To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.展开更多
Based on the difference between the online bus stop and the offline bus stop, two macro models are developed to describe the two types of bus stops. The numerical results show that the two models can qualitatively rep...Based on the difference between the online bus stop and the offline bus stop, two macro models are developed to describe the two types of bus stops. The numerical results show that the two models can qualitatively reproduce some complex phenomena resulted by the two types of bus stops and that the otttine bus stop is more effective than the online bus stop when the initial density is relatively low.展开更多
Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occur...Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.展开更多
To analyze the influence of the transit accessibility of stops on the travel mode choices of suburban residents,the number of the lines passing by the stops within an accessible range of the resident origin and destin...To analyze the influence of the transit accessibility of stops on the travel mode choices of suburban residents,the number of the lines passing by the stops within an accessible range of the resident origin and destination(OD)points and the average waiting time are used as the indexes of the transit accessibility of stops.Due to the correlation between travel time and accessible range,the transit accessibility of stops is contrasted as piecewise variables constrained by travel time.Taking the Jimei District of Xiamen,China,as an example,a binary logistic regression model of the suburban travel mode choice is constructed.The results show that it is necessary to construct transit accessibility of stops as piecewise variables.With a higher transit accessibility of stops,more residents will choose public transport.The choice of the travel mode is correlated with family attributes and personal characteristics.Morning and evening peak hours and travel distance have little effect on the choice of travel mode.Compared with the travel in urban areas,residents often chose public transport for travel within the suburbs.This research provides a basis for encouraging public transportation priority policies and decision making for transport planners in the suburbs.展开更多
The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section o...The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.展开更多
Bus is a main component of public transportation,and then the design of bus stop position,size and form should improve efficiency of public transportation.The optimization of bus stop is studied in this paper.Accordin...Bus is a main component of public transportation,and then the design of bus stop position,size and form should improve efficiency of public transportation.The optimization of bus stop is studied in this paper.According to the observation and analysis of realistic traffic,a micro-cellular automaton mixed traffic flow model with bus stop is established.And then a new evaluation index for the bus stop design is introduced.Finally,an optimized bus stop scheme is obtained by simulation.This research is studied for providing a theoretical basis for the construction of bus stop.展开更多
This paper aims to answer how to use traffic information to design energy management strategies for fuel cell buses in a networked environment.For the buses entering the bus stops scenario,this paper proposes a hierar...This paper aims to answer how to use traffic information to design energy management strategies for fuel cell buses in a networked environment.For the buses entering the bus stops scenario,this paper proposes a hierarchical energy management strategy for fuel cell buses,which considers the traffic information near the bus stops.In the upper-level trajectory planning stage,the optimal SOC trajectory under various historical traffic conditions is solved through dynamic planning.The traffic information and the best SOC trajectory are mapped through BiLSTM,which can achieve fast,real-time long-term SOC reference.In the lower-level real-time predictive energy management strategy,the optimal SOC is used as the state reference to guide the predictive energy management of fuel cell buses when entering the bus stops.Simulation results show that compared with the strategy without SOC trajectory reference,the life cost of the proposed strategy is reduced by 13.8%,and the total cost is reduced by 3.61%.The SOC of the proposed strategy is closer to the DP optimal solution.展开更多
文摘Hanoi’s rapid urbanization has led to a surge in private vehicle ownership, particularly motorcycles, amidst inadequate public transportation infrastructure. Despite government efforts, many still prefer motorized transport, citing mobility and safety concerns, exacerbated by insufficient pedestrian infrastructure. This study examines the motivations behind this reliance on motorized vehicles, particularly motorcycles, in Hanoi. Findings reveal safety and convenience as primary factors driving motorized transport use, especially for accessing bus stations. Economic incentives could promote non-motorized travel and public transport adoption. Policy implications highlight the importance of addressing economic factors and improving access infrastructure to manage motorized vehicle reliance and foster sustainable urban mobility in Hanoi.
基金National Basic Research Program of China(No.2012CB723303)
文摘To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the location between the bus stop and the access upstream or downstream,the capacity models on the expressway are developed for four cases. The results show that there are no significant differences in the capacity among four cases when the bus arrival rate is less than 60 veh / h and the car volume at the entrance and exit is less than 200 pcu / h. As the bus arrival rate and the car volume at the entrance and exit increase,the bus stops at downstream of an entrance and upstream of an exit have remarkable effect on the capacity. The increasing of berth number of the bus stop has a positive effect on the capacities of four cases.
基金Project(2012CB725400) supported by the National Basic Research Program of ChinaProjects(70901005, 71071016, 71131001) supported by the National Natural Science Foundation of ChinaProject(2011JBM055) supported by the Fundamental Research Funds for the Central Universities of China
文摘To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.
基金Supported by the Program for New Century Excellent Talents in University under Grant No.NCET-08-0038the National Natural Science Foundation of China under Grant Nos.70971007 and 70521001the State Key Basic Research Program of China under Grant No.2006CB705503
文摘Based on the difference between the online bus stop and the offline bus stop, two macro models are developed to describe the two types of bus stops. The numerical results show that the two models can qualitatively reproduce some complex phenomena resulted by the two types of bus stops and that the otttine bus stop is more effective than the online bus stop when the initial density is relatively low.
基金supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘Based on the symmetric two-lane Nagel–Schreckenberg(STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity,accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened.
基金The National Natural Science Foundation of China(No.52078224)Promotion Program for Young and Middle-Aged Teachers in Science and Technology Research at Huaqiao University(No.600005-Z17X0170).
文摘To analyze the influence of the transit accessibility of stops on the travel mode choices of suburban residents,the number of the lines passing by the stops within an accessible range of the resident origin and destination(OD)points and the average waiting time are used as the indexes of the transit accessibility of stops.Due to the correlation between travel time and accessible range,the transit accessibility of stops is contrasted as piecewise variables constrained by travel time.Taking the Jimei District of Xiamen,China,as an example,a binary logistic regression model of the suburban travel mode choice is constructed.The results show that it is necessary to construct transit accessibility of stops as piecewise variables.With a higher transit accessibility of stops,more residents will choose public transport.The choice of the travel mode is correlated with family attributes and personal characteristics.Morning and evening peak hours and travel distance have little effect on the choice of travel mode.Compared with the travel in urban areas,residents often chose public transport for travel within the suburbs.This research provides a basis for encouraging public transportation priority policies and decision making for transport planners in the suburbs.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 70631001,70701004 and 70501004)
文摘The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.
基金National Natural Science Foundation of China(71461026)Science and technology research project of Jilin Provincial Department of education in 12th Five-Year(2015-27)。
文摘Bus is a main component of public transportation,and then the design of bus stop position,size and form should improve efficiency of public transportation.The optimization of bus stop is studied in this paper.According to the observation and analysis of realistic traffic,a micro-cellular automaton mixed traffic flow model with bus stop is established.And then a new evaluation index for the bus stop design is introduced.Finally,an optimized bus stop scheme is obtained by simulation.This research is studied for providing a theoretical basis for the construction of bus stop.
基金supported by the National Natural Science Foundation of China(Grand No.52202484)the Hebei Natural Science Foundation(Grand No.F2021203118)+1 种基金the Beijing Natural Science Foundation(Grand No.J210007)the Science and Technology Project of Hebei Education Department(Grand No.QN2022093).
文摘This paper aims to answer how to use traffic information to design energy management strategies for fuel cell buses in a networked environment.For the buses entering the bus stops scenario,this paper proposes a hierarchical energy management strategy for fuel cell buses,which considers the traffic information near the bus stops.In the upper-level trajectory planning stage,the optimal SOC trajectory under various historical traffic conditions is solved through dynamic planning.The traffic information and the best SOC trajectory are mapped through BiLSTM,which can achieve fast,real-time long-term SOC reference.In the lower-level real-time predictive energy management strategy,the optimal SOC is used as the state reference to guide the predictive energy management of fuel cell buses when entering the bus stops.Simulation results show that compared with the strategy without SOC trajectory reference,the life cost of the proposed strategy is reduced by 13.8%,and the total cost is reduced by 3.61%.The SOC of the proposed strategy is closer to the DP optimal solution.