Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum...Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum bandwidth is proposed.By using the pre-set parameters of a common cycle,green/red duration and known parameters of bus dwell time distribution,link length and vehicle speed and solving the mixed-integer-linear programming and optimizing the signal offsets,the model obtains the signal control parameters of the green bands both of social vehicles and buses.Finally,taking Wangjiang Road in Hefei as an example,simulation and evaluation are carried out by VISSIM.The results show that the new model has 15.2%and 13.2%reduction in average person delay and number of stops,respectively,compared with the traditional coordinated control method.展开更多
With the continuous development of urban public transportation, the harmful GHG emissions and pollutants generated by itself and the consequent issues such as the losses of residents’ health, economic value and resid...With the continuous development of urban public transportation, the harmful GHG emissions and pollutants generated by itself and the consequent issues such as the losses of residents’ health, economic value and residents’ welfare have become the focus of social attention. In order to study the impacts of promoting new energy vehicles on public transportation pollution mitigation and residents’ health benefits, this paper adopts the LEAP model to build some scenarios that fulfill different development needs to quantitatively analyze the ownership of new energy buses, the reduction of pollutants and the losses of residents’ health welfare. It is concluded that promoting new energy buses comprehensively can significantly reduce the emissions of atmospheric pollutants and the economic losses of residents’ health, but cannot fully realize the targets of greenhouse gas reduction under Life Cycle Analysis.展开更多
The transit bus environment is considered one of the primary sources of transmission of the COVID-19(SARSCoV-2)virus.Modeling disease transmission in public buses remains a challenge,especially with uncertainties in p...The transit bus environment is considered one of the primary sources of transmission of the COVID-19(SARSCoV-2)virus.Modeling disease transmission in public buses remains a challenge,especially with uncertainties in passenger boarding,alighting,and onboard movements.Although there are initial findings on the effectiveness of some of the mitigation policies(such as face-covering and ventilation),evidence is scarce on how these policies could affect the onboard transmission risk under a realistic bus setting considering different headways,boarding and alighting patterns,and seating capacity control.This study examines the specific policy regimes that transit agencies implemented during early phases of the COVID-19 pandemic in USA,in which it brings crucial insights on combating current and future epidemics.We use an agent-based simulation model(ABSM)based on standard design characteristics for urban buses in USA and two different service frequency settings(10-min and 20-min headways).We find that wearing face-coverings(surgical masks)significantly reduces onboard transmission rates,from no mitigation rates of 85%in higher-frequency buses and 75%in lower-frequency buses to 12.5%.The most effective prevention outcome is the combination of KN-95 masks,open window policies,and half-capacity seating control during higher-frequency bus services,with an outcome of nearly 0%onboard infection rate.Our results advance understanding of COVID-19 risks in the urban bus environment and contribute to effective mitigation policy design,which is crucial to ensuring passenger safety.The findings of this study provide important policy implications for operational adjustment and safety protocols as transit agencies seek to plan for future emergencies.展开更多
The traf fic authority ofGuangzhou, capital of south China’s Guangdong Province ,recently announced that videocamer as would be installed in every city bus in order to assist with commuter safety .
基金The National Natural Science Foundation of China(No.51878236)。
文摘Considering the difference in driving parameters of buses and social vehicles on the arterial,an arterial traffic signal coordination model that takes into account social vehicles and buses on the basis of the maximum bandwidth is proposed.By using the pre-set parameters of a common cycle,green/red duration and known parameters of bus dwell time distribution,link length and vehicle speed and solving the mixed-integer-linear programming and optimizing the signal offsets,the model obtains the signal control parameters of the green bands both of social vehicles and buses.Finally,taking Wangjiang Road in Hefei as an example,simulation and evaluation are carried out by VISSIM.The results show that the new model has 15.2%and 13.2%reduction in average person delay and number of stops,respectively,compared with the traditional coordinated control method.
文摘With the continuous development of urban public transportation, the harmful GHG emissions and pollutants generated by itself and the consequent issues such as the losses of residents’ health, economic value and residents’ welfare have become the focus of social attention. In order to study the impacts of promoting new energy vehicles on public transportation pollution mitigation and residents’ health benefits, this paper adopts the LEAP model to build some scenarios that fulfill different development needs to quantitatively analyze the ownership of new energy buses, the reduction of pollutants and the losses of residents’ health welfare. It is concluded that promoting new energy buses comprehensively can significantly reduce the emissions of atmospheric pollutants and the economic losses of residents’ health, but cannot fully realize the targets of greenhouse gas reduction under Life Cycle Analysis.
文摘The transit bus environment is considered one of the primary sources of transmission of the COVID-19(SARSCoV-2)virus.Modeling disease transmission in public buses remains a challenge,especially with uncertainties in passenger boarding,alighting,and onboard movements.Although there are initial findings on the effectiveness of some of the mitigation policies(such as face-covering and ventilation),evidence is scarce on how these policies could affect the onboard transmission risk under a realistic bus setting considering different headways,boarding and alighting patterns,and seating capacity control.This study examines the specific policy regimes that transit agencies implemented during early phases of the COVID-19 pandemic in USA,in which it brings crucial insights on combating current and future epidemics.We use an agent-based simulation model(ABSM)based on standard design characteristics for urban buses in USA and two different service frequency settings(10-min and 20-min headways).We find that wearing face-coverings(surgical masks)significantly reduces onboard transmission rates,from no mitigation rates of 85%in higher-frequency buses and 75%in lower-frequency buses to 12.5%.The most effective prevention outcome is the combination of KN-95 masks,open window policies,and half-capacity seating control during higher-frequency bus services,with an outcome of nearly 0%onboard infection rate.Our results advance understanding of COVID-19 risks in the urban bus environment and contribute to effective mitigation policy design,which is crucial to ensuring passenger safety.The findings of this study provide important policy implications for operational adjustment and safety protocols as transit agencies seek to plan for future emergencies.
文摘The traf fic authority ofGuangzhou, capital of south China’s Guangdong Province ,recently announced that videocamer as would be installed in every city bus in order to assist with commuter safety .