Measuring the business-IT alignment(BITA)of an organization determines its alignment level,provides directions for further improvements,and consequently promotes the organizational performances.Due to the capabilities...Measuring the business-IT alignment(BITA)of an organization determines its alignment level,provides directions for further improvements,and consequently promotes the organizational performances.Due to the capabilities of enterprise architecture(EA)in interrelating different business/IT viewpoints and elements,the development of EA is superior to support BITA measurement.Extant BITA measurement literature is sparse when it concerns EA.The literature tends to explain how EA viewpoints or models correlate with BITA,without discussing where to collect and integrate EA data.To address this gap,this paper attempts to propose a specific BITA measurement process through associating a BITA maturity model with a famous EA framework:DoD Architectural Framework 2.0(DoDAF2.0).The BITA metrics in the maturity model are connected to the meta-models and models of DoDAF2.0.An illustrative ArchiSurance case is conducted to explain the measurement process.Systematically,this paper explores the process of BITA measurement from the viewpoint of EA,which helps to collect the measurement data in an organized way and analyzes the BITA level in the phase of architecture development.展开更多
Due to the turbulent external business environment, the complexity of internal relations of the organization and the emergence of subversive IT roles, the business-IT alignment(BITA)has become increasingly difficult. ...Due to the turbulent external business environment, the complexity of internal relations of the organization and the emergence of subversive IT roles, the business-IT alignment(BITA)has become increasingly difficult. The unsuccessful realization of BITA will lead to the waste of organizational resources, the reduction of return on investment and eventually the loss of competitive advantage. In recent years, coevolution has received widespread attention due to its ability to describe the dynamic relationship between IT and business. Multiple principles such as quickening learning action loops and adopt suitable organizing principles for achieving business and IT coevolution(BITC) are obtained. However, the continuous BITC is still hard to be achieved because of the lack of complete BITC management. This paper focuses on the management process of the BITC and how to perform it gradually. A coevolution framework combines the enterprise architecture(EA) approach with the coevolution analysis is proposed, which contains the design of EA, the sensing and governance of the misalignment and the procedure of the EA misalignment prevention.The steps for the governance and prevention of misalignment are discussed in particular. Through comparison with the principles,characteristics and methods of coevolution in the literature, the proposed framework is evaluated. The results show that the proposed framework is effective for BITC implementation.展开更多
Enterprise architecture(EA) development is always a superior way to address business-IT alignment(BITA) issue.However, most EA design frameworks are inadequate to allocate IT resources, which is an important metric of...Enterprise architecture(EA) development is always a superior way to address business-IT alignment(BITA) issue.However, most EA design frameworks are inadequate to allocate IT resources, which is an important metric of BITA maturity. Under this situation, the idea of IT resource allocation is combined with the EA design process, in order to extend prior EA research on BITA and to demonstrate EA's capability of implementing IT governance. As an effective resource allocation method, portfolio decision analysis(PDA) is used to align business functions of business architecture and applications of system architecture. Furthermore, this paper exhibits an illustrative case with the proposed framework.展开更多
Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-o...Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-operative joint alignment.However,contemporary approaches,such as kinematic alignments and hybrid techniques including adjusted mechanical,restricted kinematic,inverse kinematic,and functional alignments,are gaining attention for their ability to restore native joint kinematics and anatomical alignment,potentially leading to enhanced functional outcomes and greater patient satisfaction.The ongoing debate on optimal alignment strategies considers the following factors:long-term implant durability,functional improvement,and resolution of individual anatomical variations.Furthermore,advancements of computer-navigated and robotic-assisted surgery has augmented the precision in implant positioning and objective measurements of soft tissue balance.Despite ongoing debates on balancing implant longevity and functional outcomes,there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations.This review evaluates the spectrum of various alignment techniques in TKA,including mechanical alignment,patient-specific kinematic approaches,and emerging hybrid methods.Each technique is scrutinized based on its fundamental principles,procedural techniques,inherent advantages,and potential limitations,while identifying significant clinical gaps that underscore the need for further investigation.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-b...Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate...In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.展开更多
In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagr...In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagrange coordinate transformation, the local well-posedness of the solutions for the 1D pressureless Euler-alignment in Besov spaces with 1≤p∞ is established. Next, the ill-posedness of the solutions for this model in Besov spaces with 1≤p and is also deduced. Finally, the precise blow-up criteria of the solutions for this system is presented in Besov spaces with 1≤p .展开更多
Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluc...Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluctuating strong force field with short correlation length.展开更多
Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resol...Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.展开更多
The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in...The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.展开更多
A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing sys...A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing system.Instead of learning directly from bypass images,we use a scatterer for X-ray modulation and speckle generation for image feature enhancement.The smallest normalized root-mean-square error on the validation set was 4%.Compared with conventional alignment methods based on motor scanning and analyzer setups,the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment.Single-shot misalignment error estimation only took 0.13 s,significantly outperforming conventional methods.We also demonstrated the effects of the beam quality and pretraining using experimental data.The proposed method exhibited strong robustness,can handle high-precision focusing systems with complex or dynamic wavefront errors,and provides an important basis for intelligent control of future synchrotron radiation beamlines.展开更多
Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz...Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.展开更多
With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability ha...With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.展开更多
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein...Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.展开更多
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat...The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.展开更多
In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the...In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
基金supported by the National Natural Science Foundation of China(71571189)the State Key Laboratory of Air Traffic Management System and Technology(SKLATM201806)
文摘Measuring the business-IT alignment(BITA)of an organization determines its alignment level,provides directions for further improvements,and consequently promotes the organizational performances.Due to the capabilities of enterprise architecture(EA)in interrelating different business/IT viewpoints and elements,the development of EA is superior to support BITA measurement.Extant BITA measurement literature is sparse when it concerns EA.The literature tends to explain how EA viewpoints or models correlate with BITA,without discussing where to collect and integrate EA data.To address this gap,this paper attempts to propose a specific BITA measurement process through associating a BITA maturity model with a famous EA framework:DoD Architectural Framework 2.0(DoDAF2.0).The BITA metrics in the maturity model are connected to the meta-models and models of DoDAF2.0.An illustrative ArchiSurance case is conducted to explain the measurement process.Systematically,this paper explores the process of BITA measurement from the viewpoint of EA,which helps to collect the measurement data in an organized way and analyzes the BITA level in the phase of architecture development.
文摘Due to the turbulent external business environment, the complexity of internal relations of the organization and the emergence of subversive IT roles, the business-IT alignment(BITA)has become increasingly difficult. The unsuccessful realization of BITA will lead to the waste of organizational resources, the reduction of return on investment and eventually the loss of competitive advantage. In recent years, coevolution has received widespread attention due to its ability to describe the dynamic relationship between IT and business. Multiple principles such as quickening learning action loops and adopt suitable organizing principles for achieving business and IT coevolution(BITC) are obtained. However, the continuous BITC is still hard to be achieved because of the lack of complete BITC management. This paper focuses on the management process of the BITC and how to perform it gradually. A coevolution framework combines the enterprise architecture(EA) approach with the coevolution analysis is proposed, which contains the design of EA, the sensing and governance of the misalignment and the procedure of the EA misalignment prevention.The steps for the governance and prevention of misalignment are discussed in particular. Through comparison with the principles,characteristics and methods of coevolution in the literature, the proposed framework is evaluated. The results show that the proposed framework is effective for BITC implementation.
基金supported by the National Natural Science Foundation of China(71571189)
文摘Enterprise architecture(EA) development is always a superior way to address business-IT alignment(BITA) issue.However, most EA design frameworks are inadequate to allocate IT resources, which is an important metric of BITA maturity. Under this situation, the idea of IT resource allocation is combined with the EA design process, in order to extend prior EA research on BITA and to demonstrate EA's capability of implementing IT governance. As an effective resource allocation method, portfolio decision analysis(PDA) is used to align business functions of business architecture and applications of system architecture. Furthermore, this paper exhibits an illustrative case with the proposed framework.
文摘Achieving optimal alignment in total knee arthroplasty(TKA)is a critical factor in ensuring optimal outcomes and long-term implant survival.Traditionally,mechanical alignment has been favored to achieve neutral post-operative joint alignment.However,contemporary approaches,such as kinematic alignments and hybrid techniques including adjusted mechanical,restricted kinematic,inverse kinematic,and functional alignments,are gaining attention for their ability to restore native joint kinematics and anatomical alignment,potentially leading to enhanced functional outcomes and greater patient satisfaction.The ongoing debate on optimal alignment strategies considers the following factors:long-term implant durability,functional improvement,and resolution of individual anatomical variations.Furthermore,advancements of computer-navigated and robotic-assisted surgery has augmented the precision in implant positioning and objective measurements of soft tissue balance.Despite ongoing debates on balancing implant longevity and functional outcomes,there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations.This review evaluates the spectrum of various alignment techniques in TKA,including mechanical alignment,patient-specific kinematic approaches,and emerging hybrid methods.Each technique is scrutinized based on its fundamental principles,procedural techniques,inherent advantages,and potential limitations,while identifying significant clinical gaps that underscore the need for further investigation.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金supported by the National Natural Science Foundation of China(No.11975227)。
文摘Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金the National Natural Science Foundation of China(Grant No.62062001)Ningxia Youth Top Talent Project(2021).
文摘In the realm of data privacy protection,federated learning aims to collaboratively train a global model.However,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy of the global model.Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution.Nonetheless,previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers,thereby limiting model performance.To tackle these issues,this study proposes a hierarchical optimization method for federated learning with feature alignment and the fusion of classification decisions(FedFCD).FedFCD regularizes the relationship between global and local feature representations to achieve alignment and incorporates decision information from the global classifier,facilitating the late fusion of decision outputs from both global and local classifiers.Additionally,FedFCD employs a hierarchical optimization strategy to flexibly optimize model parameters.Through experiments on the Fashion-MNIST,CIFAR-10 and CIFAR-100 datasets,we demonstrate the effectiveness and superiority of FedFCD.For instance,on the CIFAR-100 dataset,FedFCD exhibited a significant improvement in average test accuracy by 6.83%compared to four outstanding personalized federated learning approaches.Furthermore,extended experiments confirm the robustness of FedFCD across various hyperparameter values.
文摘In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagrange coordinate transformation, the local well-posedness of the solutions for the 1D pressureless Euler-alignment in Besov spaces with 1≤p∞ is established. Next, the ill-posedness of the solutions for this model in Besov spaces with 1≤p and is also deduced. Finally, the precise blow-up criteria of the solutions for this system is presented in Besov spaces with 1≤p .
文摘Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluctuating strong force field with short correlation length.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0703003)the National Natural Science Foundation of China(No.52125501)+1 种基金the Key Research Project of Shaanxi Province(Nos.2021LLRH-08,2020GXLH-Y-021,and 2021GXLH-Z-028)the Youth InnovationTeam of Shaanxi Universities and the Fundamental Research Funds for the Central Universities.
文摘Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62005180,61935013)+2 种基金the Zhejiang Lab Open Research Project(No.K2022MG0AB01)RGC of Hong Kong S.A.R.(No.26202019)the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(HKUST)(No.ITC-PSKL12EG02)。
文摘The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.
基金supported by the National Key Research and Development Program(No.2021YFA1601000)National Natural Science Foundation of China(No.12175294)Natural Science Foundation of Shanghai,China(No.21ZR1471500).
文摘A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing system.Instead of learning directly from bypass images,we use a scatterer for X-ray modulation and speckle generation for image feature enhancement.The smallest normalized root-mean-square error on the validation set was 4%.Compared with conventional alignment methods based on motor scanning and analyzer setups,the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment.Single-shot misalignment error estimation only took 0.13 s,significantly outperforming conventional methods.We also demonstrated the effects of the beam quality and pretraining using experimental data.The proposed method exhibited strong robustness,can handle high-precision focusing systems with complex or dynamic wavefront errors,and provides an important basis for intelligent control of future synchrotron radiation beamlines.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458)。
文摘Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and Taif University Researchers Supporting Project Number TURSP-2020/34,Taif,Saudi Arabia.
文摘With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.
基金supported by the Natural Science Foundation of The Jiangsu Higher Education Institutions of China(Grant No.19JKB520031).
文摘Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.
基金supported by the National Natural Science Foundation of China(41174162).
文摘The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.
文摘In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.