A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reactio...A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Palm fiber (PF) reinforced acrylonitrile butadiene styrene (ABS) composite matrix was prepared by employing Injection Moulding Machine (IMM). Palm fiber was collected from ten different trees of different age group fr...Palm fiber (PF) reinforced acrylonitrile butadiene styrene (ABS) composite matrix was prepared by employing Injection Moulding Machine (IMM). Palm fiber was collected from ten different trees of different age group from Comilla region in Bangladesh. Three sets of samples were prepared for three different wt% (5%, 10% and 20%) of fiber contents. The mechanical (tensile strength, flexural stress, micro hardness, Leeb’s rebound hardness) and physical (bulk density and water absorption) properties were measured. The observed result reveals that the tensile strength (TS) and flexural stress (FS) were decreased with increasing fiber contents in the PF-ABS composites except 10% fiber content.展开更多
In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative densit...In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.展开更多
In this paper, the effects of build parameters on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) produced using fused deposition modeling (FDM) are investigated. Full factorial experimen...In this paper, the effects of build parameters on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) produced using fused deposition modeling (FDM) are investigated. Full factorial experimental design incorporating a 2-level, 3-factor design with raster angle, layer thickness and interior fill style was carried out. Tensile tests were performed at four different strain rates to determine how the build parameters influence the mechanical properties of the 3-D printed ABS and to assess its strain rate sensitivity under quasi-static loading. It was found that the modulus of toughness of ABS material is most influenced by raster angle, while the interior fill style is the most dominant build parameter that dictates the specimen’s modulus of resilience, yield strength and ultimate tensile strength. At all strain rates, it is further revealed that higher mean values of yield strength, ultimate tensile strength and modulus of resilience were obtained when the interior fill style is solid as opposed to high density. This can be attributed to the denser structure and higher effective cross-sectional area in solid interior fill style in comparison with high density interior fill style. However, the influence of the layer thickness on the investigated mechanical properties was found to be inconsistent. It was noted that specimens built with both 0.254 mm layer thickness and the cross [0°/90°] raster angle had superior mechanical properties when compared to those built with the 0.3302 mm layer thickness and cross [0°/90°] raster angle. This suggests that there is a key interaction between the layer thickness and the raster angle. At any FDM build parameter, it was found that all the mechanical properties investigated in this work exhibited modest sensitivity to strain rates. This study has provided a platform for an appropriate selection of build parameters combinations and strain rates for additive manufacturing of 3D-printed ABS with improved mechanical properties.展开更多
Polystyrene-styrene/butadiene diblock copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization.During the polymerization process,the molecular weight distri...Polystyrene-styrene/butadiene diblock copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization.During the polymerization process,the molecular weight distribution was narrow and the numerical molecular weight of the copolymers increased with increasing conversion of monomers,which was close to the theoretical.FT-IR and ^1H NMR results indicated that the microstructure of the polymer was mainly 1,4-trans-butadiene with small amount of 1,2-units,and composition in the copolymers was obtained.展开更多
Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composite...Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.展开更多
A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH)...A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ...展开更多
The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-buta...The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-butadiene and styrene found on the Japanese market. The maximum residual level of these volatile substances was 2600 μg/g of styrene in ABS toys. In particular, the levels of known carcinogens 1,3-butadiene, benzene, and acrylonitrile are 5.3, 2.5 and 55 μg/g, which are much lower than the EU limit of 0.1%. Furthermore, some volatile substances migrated from ABS toys into water in amounts of 3 -40 ng/mL. Thermoplastic elastomer toys and rubber toys contained these volatile substances at significantly lower levels than ABS toys.展开更多
This paper mainly deals with the design and synthesis of a novel styrene-butadieneblock copolymer. When this copolymer is used in the tread portion of tyres, it can improvewet skid resistance and reduce rolling resist...This paper mainly deals with the design and synthesis of a novel styrene-butadieneblock copolymer. When this copolymer is used in the tread portion of tyres, it can improvewet skid resistance and reduce rolling resistance without sacrificing its general physical-mechanical properties. The visco-elastic curve of tire tread using the novel copolymer asits rubber portion was showed. Reactivity ratios for two monomers in the polymerizingsystem were calculated. The diagrams of differelitial, integral and finite difference calculithroughout the whole molecular chain were presented. The influence of the micro- andmacro-structure of the copolymer chain on wet skid resistance and rolling resistance wasdiscussed展开更多
With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by prep...With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.展开更多
Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization ...Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization of uncured styrene butadiene rubber (SBR), 4-tert-butylstyrene (tBS) and ethylene-propylenc-diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a pre-polymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with the method ASTM (F726-81). The order of maximum oil absorbency was PBES>PBS>PES>PS. The maximum values of oil absorbency of PBES and PBS were 74.0g/g and 69.5g/g, respectively. Gel fractions and swelling kinetic constants, however, had the opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49. 97×10^(-2)h^(-1).展开更多
A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molec...A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molecular weight, polydispersity index, microstructure and unit composition of the miktoarm star copolymers were characterized with GPC and 1H-NMR. Performances of the miktoarm star styrene-butadiene rubbers were investigated in comparison with those of the blend rubbers such as the tin-coupled star-shaped random copolymers of styrene-butadiene rubber(S-SBR)/natural rubber (NR) blend rubber and S-SBR/Cis-1, 4-polybutadiene rubber (Cis-BR) blend rubber.展开更多
This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works wer...This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.展开更多
The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg)...The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg). In naphthenic oil which is a good solvent for the butadiene blocks, but a non-solvent for the styrene blocks and PPE, PPE was selectively included into styrene blocks in SBS, and induced the increase of the Tg of these blocks. The melting temperature determined by viscoelastic measurements and softening temperature of the gels were elevated by adding PPE, while no significant change was detected by adding polystyrene. The gel became opaque by adding PPE, and partially separated phases were observed by field emission scanning electron microscopy (FE-SEM). The dependence of the viscoelastic behavior on the PPE concentration can be explained by the structural change observed by FE-SEM.展开更多
Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, hig...Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.展开更多
Styrene-acrylic acid copolymer (SAAC)-supported iron complex (SAAC·Fe)was characterized and the effect of the characteristic parameters on the catalytic activity of the complex was investigated. IR spectrum sugge...Styrene-acrylic acid copolymer (SAAC)-supported iron complex (SAAC·Fe)was characterized and the effect of the characteristic parameters on the catalytic activity of the complex was investigated. IR spectrum suggested that the complex SAAC·Fe possesses a structure of(C)and the Fe-O bond is higher in covalency.The complex SAAC·Fe with the structure of(C)shoved a higher catalytic activity in butadiene polymerization. When Fe/-COOH molar ratio in SAAC·Fe was about 0.2 the complex gave optimum catalytic activity. The catalytic activity of SAAC·Fe with the higher content of long sequence of acrylic acid units was low. When the content of the short sequence of acrylic acid units was predominant and at the same time the content of the short sequence was approximately equal to that of the long sequence for stryrene, the activity of the complex was high.展开更多
The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes (SAAC Ln) (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin, Yb, and Lu) were described. A comparison of the activities of SAAC...The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes (SAAC Ln) (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin, Yb, and Lu) were described. A comparison of the activities of SAAC·Ln was made. It was found that in the polymerization of butadiene, a peak in activity appeared at Nd and Pr, Sin, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1, 4 polybutadiene attained was more than 98%.展开更多
基金supported by National Natural Science Foundation of China(No.50573005)
文摘A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘Palm fiber (PF) reinforced acrylonitrile butadiene styrene (ABS) composite matrix was prepared by employing Injection Moulding Machine (IMM). Palm fiber was collected from ten different trees of different age group from Comilla region in Bangladesh. Three sets of samples were prepared for three different wt% (5%, 10% and 20%) of fiber contents. The mechanical (tensile strength, flexural stress, micro hardness, Leeb’s rebound hardness) and physical (bulk density and water absorption) properties were measured. The observed result reveals that the tensile strength (TS) and flexural stress (FS) were decreased with increasing fiber contents in the PF-ABS composites except 10% fiber content.
文摘In this paper, acrylonitrile-butadiene-styrene (ABS) nanocomposite foams are produced using carbon dioxide through the solid-state batch process. Microcellular closed-cell foams are produced with the relative density ranging from 0.38 to 0.97. The effects of the processing conditions on the density, morphology, and flexural properties of ABS and its nanocomposite foams are studied. It is found that nanoclay particles, as nucleating sites, play an important role in reducing the size of cells and increasing their number in the unit volume of foamed polymer, as well as increasing the flexural modulus of foam through reinforcing its matrix.
文摘In this paper, the effects of build parameters on the mechanical properties of 3D-printed acrylonitrile butadiene styrene (ABS) produced using fused deposition modeling (FDM) are investigated. Full factorial experimental design incorporating a 2-level, 3-factor design with raster angle, layer thickness and interior fill style was carried out. Tensile tests were performed at four different strain rates to determine how the build parameters influence the mechanical properties of the 3-D printed ABS and to assess its strain rate sensitivity under quasi-static loading. It was found that the modulus of toughness of ABS material is most influenced by raster angle, while the interior fill style is the most dominant build parameter that dictates the specimen’s modulus of resilience, yield strength and ultimate tensile strength. At all strain rates, it is further revealed that higher mean values of yield strength, ultimate tensile strength and modulus of resilience were obtained when the interior fill style is solid as opposed to high density. This can be attributed to the denser structure and higher effective cross-sectional area in solid interior fill style in comparison with high density interior fill style. However, the influence of the layer thickness on the investigated mechanical properties was found to be inconsistent. It was noted that specimens built with both 0.254 mm layer thickness and the cross [0°/90°] raster angle had superior mechanical properties when compared to those built with the 0.3302 mm layer thickness and cross [0°/90°] raster angle. This suggests that there is a key interaction between the layer thickness and the raster angle. At any FDM build parameter, it was found that all the mechanical properties investigated in this work exhibited modest sensitivity to strain rates. This study has provided a platform for an appropriate selection of build parameters combinations and strain rates for additive manufacturing of 3D-printed ABS with improved mechanical properties.
基金supported by Major Program of National Natural Science Foundation of China(No. 20836007)National Natural Science Foundation of China(No.20806067).
文摘Polystyrene-styrene/butadiene diblock copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization.During the polymerization process,the molecular weight distribution was narrow and the numerical molecular weight of the copolymers increased with increasing conversion of monomers,which was close to the theoretical.FT-IR and ^1H NMR results indicated that the microstructure of the polymer was mainly 1,4-trans-butadiene with small amount of 1,2-units,and composition in the copolymers was obtained.
基金Funded by the National Natural Science Foundation of China (Nos.20674063 and 20774074)the Specialized Research Fund for the Doctoral Program of Higher Education (20050736001)
文摘Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.
基金supported by the National Natural Science Foundation of China(Nos.50573021 and 50603005)
文摘A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ...
文摘The residual levels and migration behavior of volatile substances were detected using HS-GC/MS for acrylonitrile-butadiene-styrene copolymer (ABS) toys, thermoplastic elastomer toys, and rubber toys made from 1,3-butadiene and styrene found on the Japanese market. The maximum residual level of these volatile substances was 2600 μg/g of styrene in ABS toys. In particular, the levels of known carcinogens 1,3-butadiene, benzene, and acrylonitrile are 5.3, 2.5 and 55 μg/g, which are much lower than the EU limit of 0.1%. Furthermore, some volatile substances migrated from ABS toys into water in amounts of 3 -40 ng/mL. Thermoplastic elastomer toys and rubber toys contained these volatile substances at significantly lower levels than ABS toys.
文摘This paper mainly deals with the design and synthesis of a novel styrene-butadieneblock copolymer. When this copolymer is used in the tread portion of tyres, it can improvewet skid resistance and reduce rolling resistance without sacrificing its general physical-mechanical properties. The visco-elastic curve of tire tread using the novel copolymer asits rubber portion was showed. Reactivity ratios for two monomers in the polymerizingsystem were calculated. The diagrams of differelitial, integral and finite difference calculithroughout the whole molecular chain were presented. The influence of the micro- andmacro-structure of the copolymer chain on wet skid resistance and rolling resistance wasdiscussed
文摘With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.
文摘Four oil absorbents based on styrene butadiene (SBR), i.e., pure SBR (PS), 4. tert-butylstyrene-SBR (PBS), EPDM-SBR network (PES) and 4.tert-butylstyrene-EPDMSBR (PBES), were produced from crosslinking polymerization of uncured styrene butadiene rubber (SBR), 4-tert-butylstyrene (tBS) and ethylene-propylenc-diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a pre-polymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with the method ASTM (F726-81). The order of maximum oil absorbency was PBES>PBS>PES>PS. The maximum values of oil absorbency of PBES and PBS were 74.0g/g and 69.5g/g, respectively. Gel fractions and swelling kinetic constants, however, had the opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49. 97×10^(-2)h^(-1).
基金Supported by the National Natural Science Foundation of China(50573005)
文摘A novel multifunctional macromolecular organolithium initiator (PD-Sn-(RLi)3) was prepared via living anionic polymerization and used for the synthesis of miktoarm star copolymers in cyclohexane. The average molecular weight, polydispersity index, microstructure and unit composition of the miktoarm star copolymers were characterized with GPC and 1H-NMR. Performances of the miktoarm star styrene-butadiene rubbers were investigated in comparison with those of the blend rubbers such as the tin-coupled star-shaped random copolymers of styrene-butadiene rubber(S-SBR)/natural rubber (NR) blend rubber and S-SBR/Cis-1, 4-polybutadiene rubber (Cis-BR) blend rubber.
文摘This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.
文摘The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg). In naphthenic oil which is a good solvent for the butadiene blocks, but a non-solvent for the styrene blocks and PPE, PPE was selectively included into styrene blocks in SBS, and induced the increase of the Tg of these blocks. The melting temperature determined by viscoelastic measurements and softening temperature of the gels were elevated by adding PPE, while no significant change was detected by adding polystyrene. The gel became opaque by adding PPE, and partially separated phases were observed by field emission scanning electron microscopy (FE-SEM). The dependence of the viscoelastic behavior on the PPE concentration can be explained by the structural change observed by FE-SEM.
文摘Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.
文摘Styrene-acrylic acid copolymer (SAAC)-supported iron complex (SAAC·Fe)was characterized and the effect of the characteristic parameters on the catalytic activity of the complex was investigated. IR spectrum suggested that the complex SAAC·Fe possesses a structure of(C)and the Fe-O bond is higher in covalency.The complex SAAC·Fe with the structure of(C)shoved a higher catalytic activity in butadiene polymerization. When Fe/-COOH molar ratio in SAAC·Fe was about 0.2 the complex gave optimum catalytic activity. The catalytic activity of SAAC·Fe with the higher content of long sequence of acrylic acid units was low. When the content of the short sequence of acrylic acid units was predominant and at the same time the content of the short sequence was approximately equal to that of the long sequence for stryrene, the activity of the complex was high.
文摘The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes (SAAC Ln) (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin, Yb, and Lu) were described. A comparison of the activities of SAAC·Ln was made. It was found that in the polymerization of butadiene, a peak in activity appeared at Nd and Pr, Sin, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1, 4 polybutadiene attained was more than 98%.