期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins
1
作者 ChloéLaplagne Laetitia Ligat +5 位作者 Juliet Foote Frederic Lopez Jean-Jacques Fournié Camille Laurent Salvatore Valitutti Mary Poupot 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2021年第8期1861-1870,共10页
The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies.However,the molecular mechanism of their activation by phosphoantigens(PAgs)is not complet... The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies.However,the molecular mechanism of their activation by phosphoantigens(PAgs)is not completely known.Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells,such as immune presenting cells or tumor cells.In this study,we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs,involving their TCR and the butyrophilins BTN3A1 and BTN2A1.This is the first time that these three molecules,concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells,have been shown to be involved together on the same and unique T cell during PAg activation.Moreover,the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed byγ9TCR,BTN3A1 and BTN2A1.The self-activation of Vγ9Vδ2 T cells,which leads to self-killing,can therefore participate in the failure ofγδT cell-based therapies with exogenous PAgs and should be taken into account. 展开更多
关键词 Vγ9Vδ2 T cells Phosphoantigen butyrophilins T-cell receptor
原文传递
Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing 被引量:1
2
作者 Zeguang Wu Qiezhong Lamao +10 位作者 Meichao Gu Xuanxuan Jin Ying Liu Feng Tian Ying Yu Pengfei Yuan Shuaixin Gao Thomas S.Fulford Adam P.Uldrich Catherine C.L Wong Wensheng Wei 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2024年第4期362-373,共12页
Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites.In our effort to understand how ... Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites.In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells,we performed a comprehensive genome-scale CRISPR screening of cancer cells.We found that four molecules belonging to the butyrophilin(BTN)family,specifically BTN2A1,BTN3A1,BTN3A2,and BTN3A3,are critically important and play unique,nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells.The coordinated function of these BTN molecules was driven by synchronized gene expression,which was regulated by IFN-γsignaling and the RFX complex.Additionally,an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells.Through our research,we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells.Moreover,our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity. 展开更多
关键词 BUTYROPHILIN Vγ9Vδ2 T-cell Cancer-specific immune evasion Glutaminyl-peptide cyclotransferase-like Pyrophosphate metabolite Immunotherapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部