期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
浅谈C#语言基础 被引量:3
1
作者 韦东 《计算机光盘软件与应用》 2011年第8期218-218,217,共2页
c#语言是一门简单、现代、优雅、面向对象、类型安全和平台独立的新型组件编程语言,其语言风格源自C/C++家族.融合了VisualBasic的高效和C/C++的强大,深受世界各地程序员的好评和喜爱。c#源于C语言家族,因此,C、c++和java... c#语言是一门简单、现代、优雅、面向对象、类型安全和平台独立的新型组件编程语言,其语言风格源自C/C++家族.融合了VisualBasic的高效和C/C++的强大,深受世界各地程序员的好评和喜爱。c#源于C语言家族,因此,C、c++和java的程序员能很快熟悉它,c#获得了ECMA和ISO/IEC的国际标准认证,它们分别是ECMA-334标准和ISO/IEC23270标准,Microsoft用于NET框架的c#编译器就是根据这两个标准实现的。 展开更多
关键词 c#语言 基础语法 c#类型
下载PDF
A new species in the genus Hedotettix Bolivar(Orthoptera: Tetrigidae), including chromosome karyotype, from the western Yunnan Province in China
2
作者 欧晓红 柳青 +1 位作者 郑哲民 李慧俊 《Entomotaxonomia》 CSCD 北大核心 2014年第3期166-170,共5页
A new species, Hedotettix nujiangensis Zheng sp. nov., is described. The chromosome complement of H. nujiangensis consists of 2n (♂) = 13. Sex determination is XO. All chromosomes are telocentric (T) and the sex ... A new species, Hedotettix nujiangensis Zheng sp. nov., is described. The chromosome complement of H. nujiangensis consists of 2n (♂) = 13. Sex determination is XO. All chromosomes are telocentric (T) and the sex chromosome is the fourth element in size. Type specimens are deposited at Southwest Forestry University. 展开更多
关键词 CAELIFERA C-band karyotype taxonomy
下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
3
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部