In this paper, the influence of s-semipermutable, c~#-normal, subnormally embedded and ss-quasinormal subgroups on the p-nilpotency of finite groups is investigated and some recent results are generalized.
In this paper,the authors introduce the discreteness criterion for n-dimensional subgroups in PU(1, n; C).These generalize the well-known discreteness criterion first established by T.Jorgensen.
Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = ...Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.展开更多
基金Supported by SRFPYED(2017ZDX041)and SRFPYED(2016ZDX151)
文摘In this paper, the influence of s-semipermutable, c~#-normal, subnormally embedded and ss-quasinormal subgroups on the p-nilpotency of finite groups is investigated and some recent results are generalized.
基金Supported by the Scientific Research Foundation of Kaili University(Z1519)Guizhou Province Excellence Teacher Education Program(Mathematics and Applied Mathematics)
文摘In this paper,the authors introduce the discreteness criterion for n-dimensional subgroups in PU(1, n; C).These generalize the well-known discreteness criterion first established by T.Jorgensen.
基金supported by the Deanship of Scientific Research(DSR) at King Abdulaziz University(KAU) represented by the Unit of Research Groups through the grant number(MG/31/01) for the group entitled "Abstract Algebra and its Applications"
文摘Let G be a finite group. A subgroup H of G is called an H-subgroup in G if NG(H)∩ H^g ≤ H for all g C G. A subgroup H of G is called a weakly H-subgroup in G if there exists a normal subgroup K of G such that G = HK and H N K is an H-subgroup in G. In this paper, we investigate the structure of the finite group G under the assumption that every subgroup of G of prime order or of order 4 is a weakly H-subgroup in G. Our results improve and generalize several recent results in the literature.