One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT...One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.展开更多
It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic(EM)absorption and green shielding performance,which has not been reported due to the competition between conduction loss a...It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic(EM)absorption and green shielding performance,which has not been reported due to the competition between conduction loss and reflection.Herein,by tailoring the internal structure through nano-micro engineering,a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained.With the improvement of charge transport capability of the nanofiber,the performance can be converted from EM absorption to shielding,or even coexist.Particularly,as the conductivity rising,the reflection loss declines from −52.72 to −10.5 dB,while the EM interference shielding effectiveness increases to 13.4 dB,suggesting the coexistence of the two EM functions.Furthermore,based on the high EM absorption,a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure.These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.展开更多
TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to thei...TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to their poor photocatalytic activity.Herein,a robust methodology to construct novel TiO2/Bi4 Ti3 O12/MoS2 core/shell structures as visible light photocatalysts is presented.Homogeneous bismuth oxyiodide(BiOI) nanoplates were immobilized on electrospun TiO2 nanofiber surface by successive ionic layer adsorption and reaction(SILAR) method.TiO2/Bi4 Ti3 O12 core/shell nanofibers were conveniently prepared by partial conversion of TiO2 to high crystallized Bi4 Ti3 O12 shells through a solid-state reaction with BiOI nanoplates,which is accompanied with certain transition of TiO2 from anatase to rutile phase.Afterwards,MoS2 nanosheets with several layers thick were uniform decorated on the TiO2/Bi4 TiO3 O12 fiber surface resulting in TiO2/Bi4 Ti3 O12/MoS2 structures.Significant enhancement of visible light absorption and photo-generated charge separation of TiO2/Bi4 Ti3 O12 were achieved by introduction of MoS2.As a result,the optimized TiO2/Bi4 Ti3 O12/MoS2-2 presents 60% improvement for photodegrading RhB after 120 min irradiation under visible light and 3 times higher of apparent reaction rate constant in compared with the TiO2/Bi4 Ti3 O12.This synthetic method can also be used to establish other photocatalysts simply at low cost,therefore,is suitable for practical applications.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50674048)Research Fund for the Doctoral Program of Higher Education of China(No.20103227110006)
文摘One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.
基金supported by National Natural Science Foundation of China(No.51977009,11774027,51372282,and 51132002).
文摘It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic(EM)absorption and green shielding performance,which has not been reported due to the competition between conduction loss and reflection.Herein,by tailoring the internal structure through nano-micro engineering,a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained.With the improvement of charge transport capability of the nanofiber,the performance can be converted from EM absorption to shielding,or even coexist.Particularly,as the conductivity rising,the reflection loss declines from −52.72 to −10.5 dB,while the EM interference shielding effectiveness increases to 13.4 dB,suggesting the coexistence of the two EM functions.Furthermore,based on the high EM absorption,a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure.These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
基金supported financially by the National Natural Science Foundation of China(Nos.21501140,21403165,51372197)the Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2019YQ2-06)the Key Innovation Team of Shaanxi Province(No.2014KCT-04)。
文摘TiO2/Bi4 Ti3 O12 hybrids have been widely prepared as promising photocatalysts for decomposing organic contaminations.However,the insufficient visible light absorption and low charge separation efficiency lead to their poor photocatalytic activity.Herein,a robust methodology to construct novel TiO2/Bi4 Ti3 O12/MoS2 core/shell structures as visible light photocatalysts is presented.Homogeneous bismuth oxyiodide(BiOI) nanoplates were immobilized on electrospun TiO2 nanofiber surface by successive ionic layer adsorption and reaction(SILAR) method.TiO2/Bi4 Ti3 O12 core/shell nanofibers were conveniently prepared by partial conversion of TiO2 to high crystallized Bi4 Ti3 O12 shells through a solid-state reaction with BiOI nanoplates,which is accompanied with certain transition of TiO2 from anatase to rutile phase.Afterwards,MoS2 nanosheets with several layers thick were uniform decorated on the TiO2/Bi4 TiO3 O12 fiber surface resulting in TiO2/Bi4 Ti3 O12/MoS2 structures.Significant enhancement of visible light absorption and photo-generated charge separation of TiO2/Bi4 Ti3 O12 were achieved by introduction of MoS2.As a result,the optimized TiO2/Bi4 Ti3 O12/MoS2-2 presents 60% improvement for photodegrading RhB after 120 min irradiation under visible light and 3 times higher of apparent reaction rate constant in compared with the TiO2/Bi4 Ti3 O12.This synthetic method can also be used to establish other photocatalysts simply at low cost,therefore,is suitable for practical applications.