期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Signaling interactions among neurons impact cell fitness and death in Alzheimer's disease
1
作者 Catherine Yeates Prajakta Deshpande +1 位作者 Madhuri Kango-Singh Amit Singh 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期784-789,共6页
The pathology of Alzheimer’s disease involves a long preclinical period,where the characteristic clinical symptoms of the changes in the brain are undetectable.During the preclinical period,homeostatic mechanisms may... The pathology of Alzheimer’s disease involves a long preclinical period,where the characteristic clinical symptoms of the changes in the brain are undetectable.During the preclinical period,homeostatic mechanisms may help prevent widespread cell death.Evidence has pointed towards selective cell death of diseased neurons playing a potentially protective role.As the disease progresses,dysregulation of signaling pathways that govern cell death contributes to neurodegeneration.Aberrant activation of the c-Jun N-terminal kinase pathway has been established in human and animal models of Alzheimer’s disease caused by amyloid-beta 42-or tau-mediated neurodegeneration.Clonal mosaic studies in Drosophila that examine amyloid-beta 42 in a subset of neurons suggest complex interplay between amyloid-beta 42-expressing and wild-type cells.This review examines the role of c-Jun N-terminal kinase signaling in the context of cell competition and short-range signaling interactions between amyloid-beta 42-expressing and wild-type neurons.Cell competition is a conserved phenomenon regulating tissue integrity by assessing the fitness of cells relative to their neighbors and eliminating suboptimal cells.Somatic clones of amyloid-beta 42 that juxtapose genetically distinct neuronal cell populations show promise for studying neurodegeneration.Generating genetic mosaics with labeled clones of amyloid-beta 42-or tau-expressing and wild-type neurons will allow us to understand how short-range signaling alterations trigger cell death in neurons and thereby contribute to the progression of Alzheimer’s disease.These approaches have the potential to uncover biomarkers for early Alzheimer’s disease detection and new therapeutic targets for intervention. 展开更多
关键词 Alzheimer’s disease amyloid-beta 42 mediated neurodegeneration cell competition Drosophila c-jun n-terminal kinase signaling suboptimal cell super competition super competitor cell two clone-approach wild type cell
下载PDF
Jianpi Gushen Huayu decoction ameliorated diabetic nephropathy through modulating metabolites in kidney,and inhibiting TLR4/NF-κB/NLRP3 and JNK/P38 pathways
2
作者 Zi-Ang Ma Li-Xin Wang +8 位作者 Hui Zhang Han-Zhou Li Li Dong Qing-Hai Wang Yuan-Song Wang Bao-ChaoPan Shu-Fang Zhang Huan-Tian Cui Shu-Quan Lv 《World Journal of Diabetes》 SCIE 2024年第3期502-518,共17页
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap... BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice. 展开更多
关键词 Diabetic nephropathy Jianpi Gushen Huayu Decoction Oxidative stress Inflammation Untargeted metabolomics Toll-like receptor 4/nuclear factor-kappa B/NOD-like receptor family pyrin domain containing 3 pathway c-jun n-terminal kinase/P38-mediated apoptosis
下载PDF
Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity 被引量:6
3
作者 Yue Gu Lian-Jun Ma +4 位作者 Xiao-Xue Bai Jing Jie Xiu-Fang Zhang Dong Chen Xiao-Ping Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1842-1850,共9页
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp... The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role. 展开更多
关键词 nerve regeneration mitogen-activated protein kinase phosphatase 1 c-jun n-terminal kinase signaling pathway Alzheimer's disease neurons DEMENTIA apoptosis RNA interference lentivirus inflammation oxidative stress neural regeneration
下载PDF
Arrestin-mediated signaling: Is there a controversy?
4
作者 Vsevolod V Gurevich Eugenia V Gurevich 《World Journal of Biological Chemistry》 CAS 2018年第3期25-35,共11页
The activation of the mitogen-activated protein(MAP) kinases extracellular signal-regulated kinase(ERK)1/2 was traditionally used as a readout of signaling of G protein-coupled receptors(GPCRs) via arrestins, as oppos... The activation of the mitogen-activated protein(MAP) kinases extracellular signal-regulated kinase(ERK)1/2 was traditionally used as a readout of signaling of G protein-coupled receptors(GPCRs) via arrestins, as opposed to conventional GPCR signaling via G proteins. Several recent studies using HEK293 cells where all G proteins were genetically ablated or inactivated, or both non-visual arrestins were knocked out, demonstrated that ERK1/2 phosphorylation requires G protein activity, but does not necessarily require the presence of non-visual arrestins. This appears to contradict the prevailing paradigm. Here we discuss these results along with the recent data on gene edited cells and arrestinmediated signaling. We suggest that there is no real controversy. G proteins might be involved in the activation of the upstream-most MAP3Ks, although in vivo most MAP3K activation is independent of heterotrimeric G proteins, being initiated by receptor tyrosine kinases and/or integrins. As far as MAP kinases are concerned, the best-established role of arrestins is scaffolding of the three-tiered cascades(MAP3K-MAP2 K-MAPK). Thus, it seems likely that arrestins, GPCRbound and free, facilitate the propagation of signals in these cascades, whereas signal initiation via MAP3K activation may be independent of arrestins. Different MAP3Ks are activated by various inputs, some of which are mediated by G proteins, particularly in cell culture, where we artificially prevent signaling by receptor tyrosine kinases and integrins, thereby favoring GPCR-induced signaling. Thus, there is no reason to change the paradigm: Arrestins and G proteins play distinct non-overlapping roles in cell signaling. 展开更多
关键词 G protein-coupled receptors ARRESTIN G protein signaling Extracellular signal-REGULATED kinase 1/2 c-jun n-terminal kinase 3
下载PDF
SIGNAL MECHANISM OF INHIBITION OF BIFIDOBACTERIA ON GROWTH OF COLON CANCER 被引量:1
5
作者 戴建宜 王立生 +4 位作者 朱惠明 潘令嘉 马晓东 张亚历 周殿元 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2005年第2期145-149,共5页
Objective: To explore the antitumor mechanisms of bifidobacteria adolescence in vivo. Methods: The content of extracellular signal regulated proteins (ERK)1/2, C-Jun N-terminal kinase (JNK), p38, c-fos and c-jun in nu... Objective: To explore the antitumor mechanisms of bifidobacteria adolescence in vivo. Methods: The content of extracellular signal regulated proteins (ERK)1/2, C-Jun N-terminal kinase (JNK), p38, c-fos and c-jun in nude mouse transplanted large bowel carcinoma was detected by using laser confocal microscopy. The expression of NF-κB was determined by immunohistochemistry. Results: After the nude mouse transplanted tumor was treated with bifidobacteria, the average fluorescent strength of ERK1/2, JNK, c-fos and c-jun was significantly lower than that in tumor control group (P<0.01). The average fluorescent strength of p38 was not obvious difference in the two groups (P>0.05). The positive cell density of NF-κB in large bowel carcinoma transplantation tumors in Bifidobacterium injection group was markedly lower than that in tumor group(P<0.01). Conclusion: bifidobacteria adolescence could markedly decrease the activity of ERK1/2 and JNK, the expression c-fos and c-jun, and the activity of NF-κB. 展开更多
关键词 BIFIDOBACTERIA Colon cancer signal transduction c-jun n-terminal kinase Extracellular signal- regulated protein kinase NF-κB
下载PDF
Increased expression of receptor for advanced glycation end-products worsens focal brain ischemia in diabetic rats 被引量:1
6
作者 Ying Xing Jinting He Weidong Yu Lingling Hou Jiajun Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期1000-1005,共6页
A rat model of diabetes mellitus was induced by a high fat diet, followed by focal brain ischemia induced using the thread method after 0.5 month. Immunohistochemistry showed that expression of receptor for advanced g... A rat model of diabetes mellitus was induced by a high fat diet, followed by focal brain ischemia induced using the thread method after 0.5 month. Immunohistochemistry showed that expression of receptor for advanced glycation end-products was higher in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Western blot assay revealed increased phosphorylated c-Jun N-terminal kinase expression, and unchanged phosphorylated extracellular signal-regulated protein kinase protein expression in the ischemic cortex of diabetic rats compared with non-diabetic rats with brain ischemia. Additionally, phosphorylated p38 mitogen-activated protein kinase protein was not detected in any rats in the two groups. Severity of limb hemiplegia was worse in diabetic rats with brain ischemia compared with ischemia alone rats. The results suggest that increased expression of receptor for advanced glycation end-products can further activate the c-Jun N-terminal kinase pathway in mitogen-activated protein kinase, thereby worsening brain injury associated with focal brain ischemia in diabetic rats. 展开更多
关键词 receptor for advanced glycation end-products focal brain ischemia diabetes mellitus mitogen-activated protein kinase c-jun n-terminal kinase signal transduction neural regeneration
下载PDF
Combination of Total Astragalus Extract and Total Panax Notoginseng Saponins Strengthened the Protective Effects on Brain Damage through Improving Energy Metabolism and Inhibiting Apoptosis after Cerebral Ischemia-Reperfusion in Mice 被引量:47
7
作者 HUANG Xiao-ping TAN Hua +1 位作者 CHEN Bei-yang DENG Chang-qing 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2017年第6期445-452,共8页
Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Meth... Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction. 展开更多
关键词 total Astragalus extract total Panax notoginseng saponins COMBINATION cerebral ischemia- reperfusion energy metabolism c-jun n-terminal kinase signal transduction mitochondrial apoptosis pathway Chinese medicine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部