c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-in...c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.展开更多
Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultu...Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.展开更多
BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK...BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK)activation could be a new method to reverse MDR.However,the relationship between JNK activity and MDR in HCC cells is unknown.This study aimed to explore the relationship between MDR and JNK in HCC cell lines with different degrees of MDR.METHODS:A MDR human HCC cell line,SMMC-7721/ ADM,was developed by exposing parental cells to gradually increasing concentrations of adriamycin.The MTT assay was used to determine drug sensitivity.Flow cytometry was used to analyze the cell cycle distribution and to measure the expression levels of P-glycoprotein(P-gp)and MDR-related protein(MRP)-1 in these cells.JNK1,JNK2 and JNK3 mRNA expression levels were quantified by real-time PCR.Expression and phosphorylation of JNK1,JNK2,and JNK3 were analyzed by Western blotting.RESULTS:The MDR of SMMC-7721/ADM cells resistant to 0.05 mg/L adriamycin was mainly attributed to the overexpression of P-gp but not MRP1.In addition,these cells had a significant increase in percentage in the S phase,accompanied by a decrease in percentage in the G0/G1 phase,which is likely associated with a reduced ability for cell proliferation and MDR generation.We found that JNK1,JNK2,and JNK3 activities were negatively correlated with the degree of MDR in HCC cells.CONCLUSION:This study suggests that JNK1,JNK2,and JNK3 activities are negatively correlated with the degree of MDR in HCC cells.展开更多
AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry wa...AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.展开更多
Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The...Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.展开更多
OBJECTIVE N2L is a novel lipoic acid-niacin dimer regulating lipid metabolism with multifunction,including antioxidant effect.We investigated the protective effect of N2L and the underlying mechanisms under the ferrop...OBJECTIVE N2L is a novel lipoic acid-niacin dimer regulating lipid metabolism with multifunction,including antioxidant effect.We investigated the protective effect of N2L and the underlying mechanisms under the ferroptosis inducer RAS-selective lethality 3(RSL3)treat⁃ment in HT22 cells.METHODS HT22 cells were pretreated with N2L and then were treated with RSL3 to establish a ferroptosis cell model.MTT assay was used to detect the cell survival rate.Free radical probe(dihydroethidium,DHE)and ferrous probe FerroOrange were used to detect the contents of free radicals and ferrous ions in cells.The ultrastructure of mitochondria of treat⁃ed cells was observed by transmission electron microscope.The expression of ferroptosis-relat⁃ed proteins acyl-CoA synthetase long-chain family member 4(ACSL4),glutathione peroxidase 4(GPX4),cyclooxygenase-2(COX-2),ferritin Heavy Chain 1(FTH1),nuclear factor E2-related factor 2/heme oxygenase-1,and phosphoryla⁃tion levels of the c-Jun N-terminal kinase(JNK)/extracellular regulated protein kinases(ERK)pathway were detected by Western blotting.RE⁃SULTS RSL3 decreased the cell viability and induced excessive accumulation of(reactive oxy⁃gen species)ROS in HT22 cells.N2L pretreat⁃ment effectively protected HT22 cells against lipid peroxidation.What′s more,N2L recovered GPX4 protein expression and blocked the increase of COX-2 and ACSL4 expressions.Moreover,N2L also significantly prevented FTH1 from downregulation and maintained iron homeo⁃stasis.Finally,N2L pretreatment could decrease JNK/ERK activation induced by RSL3.CON⁃CLUSION N2L is an excellent ferroptosis inhibi⁃tor,and its anti-ferroptosis mechanism may be related to the reduction of lipid peroxidation and the regulation of iron homeostasis.展开更多
目的探讨香烟烟雾对哮喘大鼠肺组织内皮素2(ET-2)表达的影响。方法大鼠腹腔注射鸡卵清蛋白/Al(OH)3混合液1 m L致敏建立哮喘模型(哮喘模型组,n=6),在哮喘模型组基础上烟熏(10支/d)连续4周为香烟烟雾哮喘组(烟雾哮喘组,n=6),分别以地塞米...目的探讨香烟烟雾对哮喘大鼠肺组织内皮素2(ET-2)表达的影响。方法大鼠腹腔注射鸡卵清蛋白/Al(OH)3混合液1 m L致敏建立哮喘模型(哮喘模型组,n=6),在哮喘模型组基础上烟熏(10支/d)连续4周为香烟烟雾哮喘组(烟雾哮喘组,n=6),分别以地塞米松2 mg/(kg·d)腹腔注射1周、ET受体抑制剂波生坦100 mg/(kg·d)灌胃及联合处理分为地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组,每组6只,设正常对照(正常对照组,腹腔注射生理盐水1 m L,n=6)及香烟烟雾对照[在正常对照组基础上,连续烟熏(10支/d)4周,n=6]。收集左肺上叶支气管肺泡灌洗液(BALF)检测细胞计数及分类,右肺上叶HE染色观察肺组织病理学改变;其余肺组织行Western blot法及免疫组织化学染色法分别检测肺组织c-Jun氨基末端激酶1/2(JNK1/2)、ET-2蛋白水平,硫代巴比妥酸法测丙二醛(MDA)水平,微量酶标法测谷胱甘肽(GSH)水平。结果与对照组比较,香烟烟雾对照组、哮喘模型组、香烟烟雾哮喘组BALF中白细胞数、中性粒细胞数及嗜酸性粒细胞数升高,肺组织中ET-2蛋白、JNK1/2蛋白、MDA及GSH水平升高;而与香烟烟雾哮喘组比较,地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组BALF中白细胞数、中性粒细胞数及嗜酸性粒细胞数均降低。肺组织中ET-2蛋白、JNK1/2蛋白、MDA及GSH表达降低。地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组气道炎症均有改善,地塞米松及波生坦处理组改善最明显。ET-2在地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组肺组织染色强度减少,地塞米松及波生坦处理组染色强度减少更明显。结论香烟烟雾暴露可加重哮喘大鼠气道炎症,ET受体抑制剂波生坦可改善气道炎症,香烟烟雾暴露哮喘发生的炎症机制可能与ET-2及JNK1/2通路有关。展开更多
文摘目的 基于c-Jun氨基末端激酶(JNK)-p62/螯合体(SQSTM1)信号通路探讨糖肾煎对2型糖尿病肾病(DN)大鼠足细胞的保护作用。方法 SD大鼠随机分成正常组、DN组、糖肾煎低、中、高[生药5、10、20 g/(kg·d)]剂量组(糖肾煎-L、M、H组)、二甲双胍组[100 mg/(kg·d)]。除正常组外,其余各组通过喂养高脂高糖饲料和腹腔注射链脲佐菌素(STZ)进行DN模型构建。药物干预结束后,检测大鼠血生化指标空腹血糖(FBG)、负荷后2 h血糖(P2 h BG)、血肌酐(SCr)、血尿素氮(BUN)水平;苏木素-伊红(HE)、六胺银(PASM)染色观察肾组织病理学变化;透射电镜(TEM)观察肾小球基底膜损伤和足细胞变化情况;Western印迹检测肾组织中微管相关蛋白1A/1B-轻链(LC)3、p-JNK、JNK、p62/SQSTM1、肾病蛋白(Nephrin)蛋白表达。结果 与正常组比较,DN组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显升高,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显降低(P<0.05);光镜下观察到肾小球缩小、管丛系膜明显扩张,并有基底膜增生增厚等现象;TEM下观察到肾小球基底膜增厚、足细胞排列紊乱、形态改变、足突融合等现象。与DN组比较,糖肾煎-L、M、H组和二甲双胍组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显降低,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显升高(P<0.05);并且肾小球基底膜增厚、足细胞足突融合等情况均获得一定程度减轻。结论 糖肾煎对2型DN大鼠足细胞具有一定保护作用,可能是通过调控JNK-p62/SQSTM1信号通路,提高足细胞自噬,从而起到肾脏保护功效。
基金supported by the Henan Province Education Department Key Project of Science and Technology Research in China,No.12A350006
文摘c-Jun NH2-terminal kinase(JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B(Trk B) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of Trk B anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neurons in vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed Trk B complexes in vitro and in vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of Trk B gradually increased in axon terminals. However, the distribution of Trk B reduced in axon terminals after knocking out JNK-interacting protein 1. In addition, there were differences in distribution of Trk B after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of Trk B in dendrites. These findings confirm that JNK-interacting protein 1 can interact with Trk B in neuronal cells, and can regulate the transport of Trk B in axons, but not in dendrites.
基金in part by Natural Sciences Foundation of China (No. 39870239)by the Sasagawa Fellowship,Japan.
文摘Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.
基金supported by grants from the Medical Innovation Fundation of Fujian Province(No.2007-CXB-7)the Natural Science Foundation of Fujian Province(No.2009D010)
文摘BACKGROUND:Multidrug resistance(MDR)is extremely common in hepatocellular carcinoma(HCC)and is a major problem in cancer eradication by limiting the efficacy of chemotherapy.Modulation of c-Jun NH2-terminal kinase(JNK)activation could be a new method to reverse MDR.However,the relationship between JNK activity and MDR in HCC cells is unknown.This study aimed to explore the relationship between MDR and JNK in HCC cell lines with different degrees of MDR.METHODS:A MDR human HCC cell line,SMMC-7721/ ADM,was developed by exposing parental cells to gradually increasing concentrations of adriamycin.The MTT assay was used to determine drug sensitivity.Flow cytometry was used to analyze the cell cycle distribution and to measure the expression levels of P-glycoprotein(P-gp)and MDR-related protein(MRP)-1 in these cells.JNK1,JNK2 and JNK3 mRNA expression levels were quantified by real-time PCR.Expression and phosphorylation of JNK1,JNK2,and JNK3 were analyzed by Western blotting.RESULTS:The MDR of SMMC-7721/ADM cells resistant to 0.05 mg/L adriamycin was mainly attributed to the overexpression of P-gp but not MRP1.In addition,these cells had a significant increase in percentage in the S phase,accompanied by a decrease in percentage in the G0/G1 phase,which is likely associated with a reduced ability for cell proliferation and MDR generation.We found that JNK1,JNK2,and JNK3 activities were negatively correlated with the degree of MDR in HCC cells.CONCLUSION:This study suggests that JNK1,JNK2,and JNK3 activities are negatively correlated with the degree of MDR in HCC cells.
基金Supported by SNUH Research Fund,Grant NO 04-2016-0220the Education and Research Encouragement Fund of Seoul National University Hospital(2015)
文摘AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.
基金This work was supported by a grant from the Project of China Postdoctoral Science Foundation (No. 20100480568).
文摘Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.
文摘OBJECTIVE N2L is a novel lipoic acid-niacin dimer regulating lipid metabolism with multifunction,including antioxidant effect.We investigated the protective effect of N2L and the underlying mechanisms under the ferroptosis inducer RAS-selective lethality 3(RSL3)treat⁃ment in HT22 cells.METHODS HT22 cells were pretreated with N2L and then were treated with RSL3 to establish a ferroptosis cell model.MTT assay was used to detect the cell survival rate.Free radical probe(dihydroethidium,DHE)and ferrous probe FerroOrange were used to detect the contents of free radicals and ferrous ions in cells.The ultrastructure of mitochondria of treat⁃ed cells was observed by transmission electron microscope.The expression of ferroptosis-relat⁃ed proteins acyl-CoA synthetase long-chain family member 4(ACSL4),glutathione peroxidase 4(GPX4),cyclooxygenase-2(COX-2),ferritin Heavy Chain 1(FTH1),nuclear factor E2-related factor 2/heme oxygenase-1,and phosphoryla⁃tion levels of the c-Jun N-terminal kinase(JNK)/extracellular regulated protein kinases(ERK)pathway were detected by Western blotting.RE⁃SULTS RSL3 decreased the cell viability and induced excessive accumulation of(reactive oxy⁃gen species)ROS in HT22 cells.N2L pretreat⁃ment effectively protected HT22 cells against lipid peroxidation.What′s more,N2L recovered GPX4 protein expression and blocked the increase of COX-2 and ACSL4 expressions.Moreover,N2L also significantly prevented FTH1 from downregulation and maintained iron homeo⁃stasis.Finally,N2L pretreatment could decrease JNK/ERK activation induced by RSL3.CON⁃CLUSION N2L is an excellent ferroptosis inhibi⁃tor,and its anti-ferroptosis mechanism may be related to the reduction of lipid peroxidation and the regulation of iron homeostasis.
文摘目的探讨香烟烟雾对哮喘大鼠肺组织内皮素2(ET-2)表达的影响。方法大鼠腹腔注射鸡卵清蛋白/Al(OH)3混合液1 m L致敏建立哮喘模型(哮喘模型组,n=6),在哮喘模型组基础上烟熏(10支/d)连续4周为香烟烟雾哮喘组(烟雾哮喘组,n=6),分别以地塞米松2 mg/(kg·d)腹腔注射1周、ET受体抑制剂波生坦100 mg/(kg·d)灌胃及联合处理分为地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组,每组6只,设正常对照(正常对照组,腹腔注射生理盐水1 m L,n=6)及香烟烟雾对照[在正常对照组基础上,连续烟熏(10支/d)4周,n=6]。收集左肺上叶支气管肺泡灌洗液(BALF)检测细胞计数及分类,右肺上叶HE染色观察肺组织病理学改变;其余肺组织行Western blot法及免疫组织化学染色法分别检测肺组织c-Jun氨基末端激酶1/2(JNK1/2)、ET-2蛋白水平,硫代巴比妥酸法测丙二醛(MDA)水平,微量酶标法测谷胱甘肽(GSH)水平。结果与对照组比较,香烟烟雾对照组、哮喘模型组、香烟烟雾哮喘组BALF中白细胞数、中性粒细胞数及嗜酸性粒细胞数升高,肺组织中ET-2蛋白、JNK1/2蛋白、MDA及GSH水平升高;而与香烟烟雾哮喘组比较,地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组BALF中白细胞数、中性粒细胞数及嗜酸性粒细胞数均降低。肺组织中ET-2蛋白、JNK1/2蛋白、MDA及GSH表达降低。地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组气道炎症均有改善,地塞米松及波生坦处理组改善最明显。ET-2在地塞米松处理组、波生坦处理组、地塞米松及波生坦处理组肺组织染色强度减少,地塞米松及波生坦处理组染色强度减少更明显。结论香烟烟雾暴露可加重哮喘大鼠气道炎症,ET受体抑制剂波生坦可改善气道炎症,香烟烟雾暴露哮喘发生的炎症机制可能与ET-2及JNK1/2通路有关。