OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine o...OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine on c AMP-dependent protein kinase A(PKA) activity in CHO cells expressing μ-,κ-,δ-and ORL1 receptors.In addition,we further examined its analgesic effect in vivo.METHODS The effect of thienorphine on cA MP-dependent PKA redistribution and cA MP inhibition were analyzed in CHO-PKAcatEGFP cells.PKA redistribution assays in CHO-PKAcatEGFP cells stably expressing μ-,κ-,δ-and ORL1 receptors were analyzed by high-throughput screening system to elucidate the efficacy of agonists or antagonists on opioid receptors.Moroever,the antinociceptive effects of thienorphine in vivo were examined using hot plate test.RESULTS Briefly,the maximum inhibition of thienorphine on PKA activity was about 36%,100%,100%and 12% in CHO-μ/κ/δ/ORL1-PKAcatE GFP cel s,respectively.In addition,thienorphine concentrationdependently inhibited the PKA activity with EC50 value of(22.7±18.1) nmol·L^(-1) in CHO-κ-PKAcatE GFP cels and(12.4±7.7) nmol·L^(-1) in CHO-δ-PKAcatE GFP cells.Thienorphine induced approximately 50%antinociceptive effect in mice lacking μ receptors compared to their wild-type controls(P<0.05).Also,the κ and δ selective antagonist nor-binaltorphimine,naltrindole decreased approximately 50%-60% in % MPE of theinorphine in μ-KO mice,respectively.The ORL1 receptor selective antagonist J113397 had no effect in %MPE of theinorphine in μ-KO mice.CONCLUSION Thienorphine induces analgesia through bindingκ-and δ-,or by partially binding μ-opioid receptor,thus further regulating the cAMP-PKA activity.Therefore,thienorphine may be used in acute or chronic pain with minimal addictive potential.展开更多
目的:构建猪链球菌2型强毒株05ZYH33 c AMP结合蛋白(CRP)编码基因敲除突变株及基因回复互补株,并探究CRP基因的缺失对细菌生物学特性及毒力的影响。方法:构建中间为壮观霉素抗性基因(Spcr)、两侧为CRP编码基因上下游同源序列的基因敲除...目的:构建猪链球菌2型强毒株05ZYH33 c AMP结合蛋白(CRP)编码基因敲除突变株及基因回复互补株,并探究CRP基因的缺失对细菌生物学特性及毒力的影响。方法:构建中间为壮观霉素抗性基因(Spcr)、两侧为CRP编码基因上下游同源序列的基因敲除质粒,通过同源重组筛选CRP编码基因敲除突变株ΔCRP;构建CRP编码基因的互补质粒,通过电转化敲除株ΔCRP,筛选CRP的基因回复互补株CΔCRP;比较分析突变株、野生株和回复互补株的基本生物学特征的差异,并以小鼠作为动物感染模型对突变株、互补株及野生株的毒力进行评估分析。结果:应用组合PCR和基因测序分析,证实构建了CRP的突变株ΔCRP,并筛选出CRP的回复互补株CΔCRP;逆转录PCR证实在突变株ΔCRP中CRP在转录水平缺失,而在回复互补株CΔCRP中其转录回复;在丰富营养情况下,突变株ΔCRP与野生株的溶血活性、生长速率及对小鼠的致病力均无显著性差异,但突变株的成链能力减弱。结论:CRP编码基因的缺失并未显著改变野毒株05ZYH33的基本生物学特性和毒力,提示CRP可能不是猪链球菌的关键毒力决定因子,其参与碳源代谢等功能有待进一步研究。展开更多
Objective The complex of the cyclic AMP receptor protein (CRP) and cAMP is an important transcriptional regulator of numerous genes in prokaryotes. The transport of mannitol through the phosphotransferase systems (...Objective The complex of the cyclic AMP receptor protein (CRP) and cAMP is an important transcriptional regulator of numerous genes in prokaryotes. The transport of mannitol through the phosphotransferase systems (PTS) is regulated by the CRP-cAMP complex. The aim of the study is to investigate how the CRP-cAMP complex acting on the mannitol PTS operon mtl of the Vibrio cholerae El Tot biotype. Methods The crp mutant strain was generated by homologous recombination to assess the need of CRP to activate the mannitol PTS operon of V. choleroe El Tor. Electrophoretic mobility shift assays (EMSA) and the reporter plasmid pBBRlux were used to confirm the role that the CRP-cAMP complex playing on the mannitol PTS operon intl. Results In this study, we confirmed that CRP is strictly needed for the activation of the mtl operon. We further experimentally identified five CRP binding sites within the promoter region upstream of the mannitol PTS operon mtl of the Vibrio cholerae El Tor biotype and found that these sites display different affinities for CRP and provide different contributions to the activation of the operon. Conclusion The five binding sites collectively confer the strong activation of mannitol transfer by CRP in V. choleroe, indicating an elaborate and subtle CRP activation mechanism.展开更多
Transthyretin (TTR), a carrier protein present in the liver and choroid plexus of the brain, has been shown to be responsible for binding thyroid hormone thyroxin (T4) and retinol in plasma and cerebrospinal fluid (CS...Transthyretin (TTR), a carrier protein present in the liver and choroid plexus of the brain, has been shown to be responsible for binding thyroid hormone thyroxin (T4) and retinol in plasma and cerebrospinal fluid (CSF). TTR aids in sequestering of beta-amyloid peptides Aβ deposition, and protects the brain from trauma, ischemic stroke and Alzheimer disease (AD). Accordingly, hippocampal gene expression of TTR plays a significant role in learning and memory as well as in simulation of spatial memory tasks. TTR via interacting with transcription factor CREB regulates this process and decreased expression leads to memory deficits. By different signaling pathways, like MAPK, AKT, and ERK via Src, TTR provides tropical support through megalin receptor by promoting neurite outgrowth and protecting the neurons from traumatic brain injury. TTR is also responsible for the transient rise in intracellular Ca2+ via NMDA receptor, playing a dominant role under excitotoxic conditions. In this review, we tried to shed light on how TTR is involved in maintaining normal cognitive processes, its role in learning and memory, under memory deficit conditions;by which mechanisms it promotes neurite outgrowth;and how it protects the brain from Alzheimer disease (AD).展开更多
基金National Natural Science Foundation of China(8147319481773709).
文摘OBJECTIVE Thienorphine,a new oripavine derivative,has shown to possess stronger antinociceptive effects and better oral bioavailability compared to buprenorphine.The present study examines the effect of thienorphine on c AMP-dependent protein kinase A(PKA) activity in CHO cells expressing μ-,κ-,δ-and ORL1 receptors.In addition,we further examined its analgesic effect in vivo.METHODS The effect of thienorphine on cA MP-dependent PKA redistribution and cA MP inhibition were analyzed in CHO-PKAcatEGFP cells.PKA redistribution assays in CHO-PKAcatEGFP cells stably expressing μ-,κ-,δ-and ORL1 receptors were analyzed by high-throughput screening system to elucidate the efficacy of agonists or antagonists on opioid receptors.Moroever,the antinociceptive effects of thienorphine in vivo were examined using hot plate test.RESULTS Briefly,the maximum inhibition of thienorphine on PKA activity was about 36%,100%,100%and 12% in CHO-μ/κ/δ/ORL1-PKAcatE GFP cel s,respectively.In addition,thienorphine concentrationdependently inhibited the PKA activity with EC50 value of(22.7±18.1) nmol·L^(-1) in CHO-κ-PKAcatE GFP cels and(12.4±7.7) nmol·L^(-1) in CHO-δ-PKAcatE GFP cells.Thienorphine induced approximately 50%antinociceptive effect in mice lacking μ receptors compared to their wild-type controls(P<0.05).Also,the κ and δ selective antagonist nor-binaltorphimine,naltrindole decreased approximately 50%-60% in % MPE of theinorphine in μ-KO mice,respectively.The ORL1 receptor selective antagonist J113397 had no effect in %MPE of theinorphine in μ-KO mice.CONCLUSION Thienorphine induces analgesia through bindingκ-and δ-,or by partially binding μ-opioid receptor,thus further regulating the cAMP-PKA activity.Therefore,thienorphine may be used in acute or chronic pain with minimal addictive potential.
文摘目的:构建猪链球菌2型强毒株05ZYH33 c AMP结合蛋白(CRP)编码基因敲除突变株及基因回复互补株,并探究CRP基因的缺失对细菌生物学特性及毒力的影响。方法:构建中间为壮观霉素抗性基因(Spcr)、两侧为CRP编码基因上下游同源序列的基因敲除质粒,通过同源重组筛选CRP编码基因敲除突变株ΔCRP;构建CRP编码基因的互补质粒,通过电转化敲除株ΔCRP,筛选CRP的基因回复互补株CΔCRP;比较分析突变株、野生株和回复互补株的基本生物学特征的差异,并以小鼠作为动物感染模型对突变株、互补株及野生株的毒力进行评估分析。结果:应用组合PCR和基因测序分析,证实构建了CRP的突变株ΔCRP,并筛选出CRP的回复互补株CΔCRP;逆转录PCR证实在突变株ΔCRP中CRP在转录水平缺失,而在回复互补株CΔCRP中其转录回复;在丰富营养情况下,突变株ΔCRP与野生株的溶血活性、生长速率及对小鼠的致病力均无显著性差异,但突变株的成链能力减弱。结论:CRP编码基因的缺失并未显著改变野毒株05ZYH33的基本生物学特性和毒力,提示CRP可能不是猪链球菌的关键毒力决定因子,其参与碳源代谢等功能有待进一步研究。
基金supported by NSFC key project grants 30830008 and 81171640
文摘Objective The complex of the cyclic AMP receptor protein (CRP) and cAMP is an important transcriptional regulator of numerous genes in prokaryotes. The transport of mannitol through the phosphotransferase systems (PTS) is regulated by the CRP-cAMP complex. The aim of the study is to investigate how the CRP-cAMP complex acting on the mannitol PTS operon mtl of the Vibrio cholerae El Tot biotype. Methods The crp mutant strain was generated by homologous recombination to assess the need of CRP to activate the mannitol PTS operon of V. choleroe El Tor. Electrophoretic mobility shift assays (EMSA) and the reporter plasmid pBBRlux were used to confirm the role that the CRP-cAMP complex playing on the mannitol PTS operon intl. Results In this study, we confirmed that CRP is strictly needed for the activation of the mtl operon. We further experimentally identified five CRP binding sites within the promoter region upstream of the mannitol PTS operon mtl of the Vibrio cholerae El Tor biotype and found that these sites display different affinities for CRP and provide different contributions to the activation of the operon. Conclusion The five binding sites collectively confer the strong activation of mannitol transfer by CRP in V. choleroe, indicating an elaborate and subtle CRP activation mechanism.
文摘Transthyretin (TTR), a carrier protein present in the liver and choroid plexus of the brain, has been shown to be responsible for binding thyroid hormone thyroxin (T4) and retinol in plasma and cerebrospinal fluid (CSF). TTR aids in sequestering of beta-amyloid peptides Aβ deposition, and protects the brain from trauma, ischemic stroke and Alzheimer disease (AD). Accordingly, hippocampal gene expression of TTR plays a significant role in learning and memory as well as in simulation of spatial memory tasks. TTR via interacting with transcription factor CREB regulates this process and decreased expression leads to memory deficits. By different signaling pathways, like MAPK, AKT, and ERK via Src, TTR provides tropical support through megalin receptor by promoting neurite outgrowth and protecting the neurons from traumatic brain injury. TTR is also responsible for the transient rise in intracellular Ca2+ via NMDA receptor, playing a dominant role under excitotoxic conditions. In this review, we tried to shed light on how TTR is involved in maintaining normal cognitive processes, its role in learning and memory, under memory deficit conditions;by which mechanisms it promotes neurite outgrowth;and how it protects the brain from Alzheimer disease (AD).