OBJECTIVE Urocortins(UCNs)and transforming growth factor-β(TGF-β)have been demonstrated to participate in various cardiovascular diseases,many of which involve VSMCs proliferation.And cytosolic phospholipase A2(c PL...OBJECTIVE Urocortins(UCNs)and transforming growth factor-β(TGF-β)have been demonstrated to participate in various cardiovascular diseases,many of which involve VSMCs proliferation.And cytosolic phospholipase A2(c PLA2)-mediated arachidonic acid(AA)release is an important cause of vascular smooth muscle cells(VSMCs)proliferation.The work was to investigate the regulation of VSMCs proliferation by UCN/TGF-βand whether c PLA2 was a link between their signaling pathways.METHODS VSMC proliferation was measured by MTT assay and immunofluorescence microscopy.Using cell flow cytometry,the changes in the cell cycle phases were investigated.si RNA was used to knockdown Smad2 and smad3 genes.Lentiviral Vector Particle was performed to over express c PLA2 gene.RESULTS Both UCN and TGF-βinhibited VSMCs proliferation and an additive effect was observed when the cells were treated with UCN plus TGF-β.TGF-βincreased the percentage of cells in G1-phase while UCN increased the cell percentage in G2-phase with a concomitant decrease in S-phase.Neither knockdown of smad2 nor smad3 reversed the role of TGF-β.Furthermore,c PLA2expression was increased by TGF-βbut decreased by UCN and UCN attenuated TGF-β-induced c PLA2 expression.In primary VSMCs,TGF-βinduced c PLA2 phosphorylation,and this effect was also attenuated by UCN.Similar to UCN,the c PLA2 inhibitor,pyrrophenone(PYR),also played a role in enhancing TGF-β-mediated mitoinhibition.Inversely,over-expression of c PLA2 eliminated the effect of UCN on the mitoinhibition.CONCLUSION The pretreatment with UCN counteracted TGF-β-mediated c PLA2 expression and activation,thereby contributing to TGF-β-mediated mitoinhibition of VSMCs.展开更多
Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum album...Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum albumin (c-BSA) into tail vein for several times. model mice were randomly divided into MN group (equal amount of distilled water), Shenqi Zhilong Decoction low dose group (12 g crude drug/kg), Shenqi Zhilong Decoction high dose group (24 g crude drug/kg), and Tripterygium wilfordii polyglycoside tablet group (14 mg/ kg). Another 10 un-treatment mice were taken as control group (equal amount of distilled water). The drug was administered orally once a day for 4 weeks. After the last administration, 24 hours urine was collected to determine the urinary protein content;blood from inner canthus was collected to measure the changes of kidney function, liver function, blood lipid and levels of IL-6, IL-4 and TNF-α in serum in each group;HE staining was used to observe the pathological changes of kidney. Immunohistochemical staining was used to observe the expression of IgG in kidney. The protein expression of ERK1/2 and cPLA2 in renal tissues was determined by Western-blot method. The gene expression of Neph1, Nephrin and Podocin mRNA in kidney tissues were detected by RT-PCR. Results: Compared with model group, Shenqi Zhilong decoction at low-dose and high-dose could significantly reduce the value of urine protein in MN mice;Decreased TC and TG levels (P<0.05 or P<0.01);Increased the levels of ALB and TP in liver function (P<0.05 or P<0.01);has no significant effects on the levels of CRE, UREA and UA in renal function (P>0.05). Decreased the contents of IL-6, IL-4 and TNF-α in serum (P<0.05 or P<0.01);Significantly down-regulated the protein expression levels of p-ERK1/2 and p-cPLA2 in kidney tissues of MN mice (P<0.05 or P<0.01);Significantly increased the expression levels of NephP1, Nephrin and Podocin mRNA in renal tissues (P<0.01). Conclusion: Shenqi Zhulong Decoction has a good therapeutic effect on MN mice, and the mechanism of action is related to regulate the expression of related genes of Nephrin-Podocin-Neph1 receptor complex for protecting the glomerular filtration barrier, and inhibite the activation of ERK/cPLA2 pathway for relieving damage of GEC and reduceing secretion of pro-inflammatory cytokines.展开更多
The expression of cytosolic phospholipase A2 (cPLA2) expression is up-regulated in animal model of ALS and in patients with familial amyotrophic lateral sclerosis (fALS). Inhibition of cyclooxygenase 2 (COX2), which i...The expression of cytosolic phospholipase A2 (cPLA2) expression is up-regulated in animal model of ALS and in patients with familial amyotrophic lateral sclerosis (fALS). Inhibition of cyclooxygenase 2 (COX2), which is a downstream enzyme of cPLA2, ameliorates the impairment of motor function in the ALS model mice. Therefore, the arachidonic acid cascade, including the cPLA2-COX2 pathway, is an important therapeutic target of ALS. The current study was designed to investigate the potential of AK106-001616, an inhibitor of cPLA2, in protection of motor neuron cell death induced by mutant superoxide dismutase (SOD1<sup>G93A</sup>). AK106-001616 (1 - 10 μM) protected NSC34 cells (mouse motor neuron like cells) against SOD1<sup>G93A</sup>-induced motor neuron cell death. Furthermore, aspirin, an inhibitor of COX1/2, reduced the SOD1<sup>G93A</sup>-induced motor neuron cell death at a concentration that inhibited COX2. Celecoxib, a selective COX2 inhibitor, also reduced the SOD1<sup>G93A</sup>-induced motor neuron cell death. These results suggest that the arachidonic acid cascade is important for SOD1<sup>G93A</sup>-induced motor neuron cell death and AK106-001616 has a potent neuroprotective effect against it. AK106-001616 may be a useful therapeutic agent against SOD1<sup>G93A</sup>-induced ALS.展开更多
Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammat...Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammation attributed primarily to infection by oral anaerobe, P. gingivalis. In this study, we explored the role of Rac1 and mitogen-activated protein kinases (MAPKs) in the processes of MMP-9 release in sublingual salivary gland cells exposed to P. gingivalis key endotoxin, cell wall lipopolysaccharide (LPS). We demonstrate that the LPS-elicited induction in the acinar cell MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A<sub>2</sub> (cPLA<sub>2</sub>). Further, we reveal that the LPS-induced MMP-9 release involves ERK-mediated phosphorylation of cPLA<sub>2</sub> on Ser<sup>505</sup> that is essential for its membrane translocation with Rac1, and that this process requires p38 activation. Moreover, we show that phosphorylation and membrane localization of p38 with Rac1-GTP play a pivotal role in cPLA<sub>2</sub>-dependent induction in MMP-9 release. Thus collectively, our findings infer that P. gingivalis LPS-induced up-regulation in the acinar cell MMP-9 release requires ERK-dependent recruitment of cPLA<sub>2</sub> to the membrane localized Rac1/p38 complex.展开更多
Ghrelin, a peptide hormone produced mainly in the stomach, has emerged recently as an important regulator of nitric oxide synthase (NOS) and cyclooxygenase (COX) enzyme systems, the products of which play direct cytop...Ghrelin, a peptide hormone produced mainly in the stomach, has emerged recently as an important regulator of nitric oxide synthase (NOS) and cyclooxygenase (COX) enzyme systems, the products of which play direct cytoprotective function in the maintenance of gastric mucosal integrity. In this study, using gastric mucosal cells, we report on the role of ghrelin in countering the cytotoxic effect of ethanol on mucin synthesis. We show that the countering effect of ghrelin on mucin synthesis was associated with the increase in NO and PGE2 production, and characterized by a marked up-regulation in cytosolic phospholipase A2 (cPLA2) activity. The ghrelin-induced up-regulation in mucin synthesis, like that of cPLA2 activity, was subject to suppression by Src inhibitor, PP2 and ERK inhibitor, PD98059, as well as ascorbate. Moreover, the loss in countering effect of ghrelin on the ethanol cytotoxicity and mucin synthesis was attained with cNOS inhibitor, L-NAME as well as COX-1 inhibitor SC-560. The effect of L-NAME was reflected in the inhibition of ghrelin-induced mucosal cell capacity for NO production, cPLA2 S-nitrosylation and PGE2 generation, whereas COX-1 inhibitor caused only the inhibition in PGE2 generation. Our findings suggest that the activation of gastric mucosal cPLA2 through cNOS-induced S-nitrosylation plays an essential role in the countering effect of ghrelin on the disturbances in gastric mucin synthesis caused by ethanol cytotoxicity.展开更多
基金The project supported by National Natural Science Foundation of China(81573424&81273510)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘OBJECTIVE Urocortins(UCNs)and transforming growth factor-β(TGF-β)have been demonstrated to participate in various cardiovascular diseases,many of which involve VSMCs proliferation.And cytosolic phospholipase A2(c PLA2)-mediated arachidonic acid(AA)release is an important cause of vascular smooth muscle cells(VSMCs)proliferation.The work was to investigate the regulation of VSMCs proliferation by UCN/TGF-βand whether c PLA2 was a link between their signaling pathways.METHODS VSMC proliferation was measured by MTT assay and immunofluorescence microscopy.Using cell flow cytometry,the changes in the cell cycle phases were investigated.si RNA was used to knockdown Smad2 and smad3 genes.Lentiviral Vector Particle was performed to over express c PLA2 gene.RESULTS Both UCN and TGF-βinhibited VSMCs proliferation and an additive effect was observed when the cells were treated with UCN plus TGF-β.TGF-βincreased the percentage of cells in G1-phase while UCN increased the cell percentage in G2-phase with a concomitant decrease in S-phase.Neither knockdown of smad2 nor smad3 reversed the role of TGF-β.Furthermore,c PLA2expression was increased by TGF-βbut decreased by UCN and UCN attenuated TGF-β-induced c PLA2 expression.In primary VSMCs,TGF-βinduced c PLA2 phosphorylation,and this effect was also attenuated by UCN.Similar to UCN,the c PLA2 inhibitor,pyrrophenone(PYR),also played a role in enhancing TGF-β-mediated mitoinhibition.Inversely,over-expression of c PLA2 eliminated the effect of UCN on the mitoinhibition.CONCLUSION The pretreatment with UCN counteracted TGF-β-mediated c PLA2 expression and activation,thereby contributing to TGF-β-mediated mitoinhibition of VSMCs.
基金Fund Project:Heilongjiang Natural Science Foundation Project(No.LH2020H104)Heilongjiang Postdoctoral Fund(No.LBH-Z20033)。
文摘Objective: To explore the therapeutic effect and underlying mechanism of Shenqi Zhilong Decoction on mice with membranous nephropathy (MN). Methods:Mice with MN was established by injecting cationic bovine serum albumin (c-BSA) into tail vein for several times. model mice were randomly divided into MN group (equal amount of distilled water), Shenqi Zhilong Decoction low dose group (12 g crude drug/kg), Shenqi Zhilong Decoction high dose group (24 g crude drug/kg), and Tripterygium wilfordii polyglycoside tablet group (14 mg/ kg). Another 10 un-treatment mice were taken as control group (equal amount of distilled water). The drug was administered orally once a day for 4 weeks. After the last administration, 24 hours urine was collected to determine the urinary protein content;blood from inner canthus was collected to measure the changes of kidney function, liver function, blood lipid and levels of IL-6, IL-4 and TNF-α in serum in each group;HE staining was used to observe the pathological changes of kidney. Immunohistochemical staining was used to observe the expression of IgG in kidney. The protein expression of ERK1/2 and cPLA2 in renal tissues was determined by Western-blot method. The gene expression of Neph1, Nephrin and Podocin mRNA in kidney tissues were detected by RT-PCR. Results: Compared with model group, Shenqi Zhilong decoction at low-dose and high-dose could significantly reduce the value of urine protein in MN mice;Decreased TC and TG levels (P<0.05 or P<0.01);Increased the levels of ALB and TP in liver function (P<0.05 or P<0.01);has no significant effects on the levels of CRE, UREA and UA in renal function (P>0.05). Decreased the contents of IL-6, IL-4 and TNF-α in serum (P<0.05 or P<0.01);Significantly down-regulated the protein expression levels of p-ERK1/2 and p-cPLA2 in kidney tissues of MN mice (P<0.05 or P<0.01);Significantly increased the expression levels of NephP1, Nephrin and Podocin mRNA in renal tissues (P<0.01). Conclusion: Shenqi Zhulong Decoction has a good therapeutic effect on MN mice, and the mechanism of action is related to regulate the expression of related genes of Nephrin-Podocin-Neph1 receptor complex for protecting the glomerular filtration barrier, and inhibite the activation of ERK/cPLA2 pathway for relieving damage of GEC and reduceing secretion of pro-inflammatory cytokines.
文摘The expression of cytosolic phospholipase A2 (cPLA2) expression is up-regulated in animal model of ALS and in patients with familial amyotrophic lateral sclerosis (fALS). Inhibition of cyclooxygenase 2 (COX2), which is a downstream enzyme of cPLA2, ameliorates the impairment of motor function in the ALS model mice. Therefore, the arachidonic acid cascade, including the cPLA2-COX2 pathway, is an important therapeutic target of ALS. The current study was designed to investigate the potential of AK106-001616, an inhibitor of cPLA2, in protection of motor neuron cell death induced by mutant superoxide dismutase (SOD1<sup>G93A</sup>). AK106-001616 (1 - 10 μM) protected NSC34 cells (mouse motor neuron like cells) against SOD1<sup>G93A</sup>-induced motor neuron cell death. Furthermore, aspirin, an inhibitor of COX1/2, reduced the SOD1<sup>G93A</sup>-induced motor neuron cell death at a concentration that inhibited COX2. Celecoxib, a selective COX2 inhibitor, also reduced the SOD1<sup>G93A</sup>-induced motor neuron cell death. These results suggest that the arachidonic acid cascade is important for SOD1<sup>G93A</sup>-induced motor neuron cell death and AK106-001616 has a potent neuroprotective effect against it. AK106-001616 may be a useful therapeutic agent against SOD1<sup>G93A</sup>-induced ALS.
文摘Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammation attributed primarily to infection by oral anaerobe, P. gingivalis. In this study, we explored the role of Rac1 and mitogen-activated protein kinases (MAPKs) in the processes of MMP-9 release in sublingual salivary gland cells exposed to P. gingivalis key endotoxin, cell wall lipopolysaccharide (LPS). We demonstrate that the LPS-elicited induction in the acinar cell MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A<sub>2</sub> (cPLA<sub>2</sub>). Further, we reveal that the LPS-induced MMP-9 release involves ERK-mediated phosphorylation of cPLA<sub>2</sub> on Ser<sup>505</sup> that is essential for its membrane translocation with Rac1, and that this process requires p38 activation. Moreover, we show that phosphorylation and membrane localization of p38 with Rac1-GTP play a pivotal role in cPLA<sub>2</sub>-dependent induction in MMP-9 release. Thus collectively, our findings infer that P. gingivalis LPS-induced up-regulation in the acinar cell MMP-9 release requires ERK-dependent recruitment of cPLA<sub>2</sub> to the membrane localized Rac1/p38 complex.
文摘Ghrelin, a peptide hormone produced mainly in the stomach, has emerged recently as an important regulator of nitric oxide synthase (NOS) and cyclooxygenase (COX) enzyme systems, the products of which play direct cytoprotective function in the maintenance of gastric mucosal integrity. In this study, using gastric mucosal cells, we report on the role of ghrelin in countering the cytotoxic effect of ethanol on mucin synthesis. We show that the countering effect of ghrelin on mucin synthesis was associated with the increase in NO and PGE2 production, and characterized by a marked up-regulation in cytosolic phospholipase A2 (cPLA2) activity. The ghrelin-induced up-regulation in mucin synthesis, like that of cPLA2 activity, was subject to suppression by Src inhibitor, PP2 and ERK inhibitor, PD98059, as well as ascorbate. Moreover, the loss in countering effect of ghrelin on the ethanol cytotoxicity and mucin synthesis was attained with cNOS inhibitor, L-NAME as well as COX-1 inhibitor SC-560. The effect of L-NAME was reflected in the inhibition of ghrelin-induced mucosal cell capacity for NO production, cPLA2 S-nitrosylation and PGE2 generation, whereas COX-1 inhibitor caused only the inhibition in PGE2 generation. Our findings suggest that the activation of gastric mucosal cPLA2 through cNOS-induced S-nitrosylation plays an essential role in the countering effect of ghrelin on the disturbances in gastric mucin synthesis caused by ethanol cytotoxicity.
基金supported by grants from Tianjin Natural Scientific Foundation(14JCZDJC32800)National Basic Research Program of China(2015CB553905)+1 种基金Hi-Tech Research and Development Program of China(2014AA020903)The National Natural Science Foundation of China(81372186)~~