A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force find...A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.展开更多
The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when...The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.展开更多
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented here...The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.展开更多
文摘A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.
文摘The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.
基金Project (No.863-705-210) supported by the Hi-Tech Research and Development Program (863) of China
文摘The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.