A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical met...A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.展开更多
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed usi...The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.展开更多
In order to achieve large tolerance capture and high stiffness connection for space payload operations,a Chinese large-scale space end-effector (EER) was developed.Three flexible steel cables were adopted to capture t...In order to achieve large tolerance capture and high stiffness connection for space payload operations,a Chinese large-scale space end-effector (EER) was developed.Three flexible steel cables were adopted to capture the payload with large capture allowance.Ball screw transmission mechanism and plane shape-constraint four bar linkage mechanism were utilized to connect the payload with high stiffness.The experiments show that capture tolerances in X,Y,Z,Pitch,Yaw,Roll directions are 100 mm,100 mm,120 mm,10.5°,10.5°,12°,respectively.The maximum connection stiffness is 4 800 N·m.The end-effector could meet the requirements for space large tolerance capture and high stiffness connection in the future.展开更多
基金supported by the National Natural Science Foundation of China(No.50875252)the Program for New Century Excellent Talents in University(No.NCET-06-0479).
文摘A6×19 point-contact hoisting cable was used as our research object to examine the progress of corrosion of steel wires in a laboratory,simulating the actual working conditions in a coalmine.An electrochemical method was used to investigate the corrosion behavior of steel wires with different surface treatments of a corrosive acid solution.The results show that anode activation of steel wire mainly occurs during pre-corrosion,where the anode activation process of bare steel wires is the fastest as is their corresponding corrosion speed,while the anode activation process of oil coated steel wires and their corresponding corrosion speed are the lowest.During the intermediate and late immersion periods, a passive film is generated on the surface of steel wires,which are gradually damaged with the passage of time.Local pitting corrosion occurs easily on the surface of steel wires with a high-polarization potential. Suitable equivalent circuits were chosen to fit the electrochemical impedance spectroscopy(EIS)of steel wires over various corrosive times and different surface treatments,which indicate good fitting results. The double electrical layer charge-transfer resistance increases in the sequence:bare steel wire, untreated steel wire and oil coated steel wire and their corrosion resistance decreases in turn,which is consistent with their polarization curves.The oil layer provides a certain protective effect on untreated steel wires,but its effect is not entirely clear.
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
基金The authors would like to acknowledge the support from Key-Area Research and Development Program of Guangdong Province(2019B111106002)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB460023).
文摘The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.
基金Project(2006AA04Z228) supported by the National High Technology Research and Development Program of China
文摘In order to achieve large tolerance capture and high stiffness connection for space payload operations,a Chinese large-scale space end-effector (EER) was developed.Three flexible steel cables were adopted to capture the payload with large capture allowance.Ball screw transmission mechanism and plane shape-constraint four bar linkage mechanism were utilized to connect the payload with high stiffness.The experiments show that capture tolerances in X,Y,Z,Pitch,Yaw,Roll directions are 100 mm,100 mm,120 mm,10.5°,10.5°,12°,respectively.The maximum connection stiffness is 4 800 N·m.The end-effector could meet the requirements for space large tolerance capture and high stiffness connection in the future.