Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal o...Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, ...A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.展开更多
Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent impreci...Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.展开更多
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s...Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.展开更多
The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have ...The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.展开更多
in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativ...in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.展开更多
基金supported in part by the National Natural Science Foundation of China(12271146,12161036,61866011,11961025,61976120)the Natural Science Key Foundation of Jiangsu Education Department(21KJA510004)Discovery Grant from Natural Science and Engineering Research Council of Canada(NSERC)。
文摘Three-way decision(T-WD)theory is about thinking,problem solving,and computing in threes.Behavioral decision making(BDM)focuses on effective,cognitive,and social processes employed by humans for choosing the optimal object,of which prospect theory and regret theory are two widely used tools.The hesitant fuzzy set(HFS)captures a series of uncertainties when it is difficult to specify precise fuzzy membership grades.Guided by the principles of three-way decisions as thinking in threes and integrating these three topics together,this paper reviews and examines advances in three-way behavioral decision making(TW-BDM)with hesitant fuzzy information systems(HFIS)from the perspective of the past,present,and future.First,we provide a brief historical account of the three topics and present basic formulations.Second,we summarize the latest development trends and examine a number of basic issues,such as one-sidedness of reference points and subjective randomness for result values,and then report the results of a comparative analysis of existing methods.Finally,we point out key challenges and future research directions.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.
基金Supported by the National Natural Science Foundation of China (60573119, 604973098) and IBM joint project
文摘A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.
文摘Sensorial information is very difficult to elicit, to represent and to manage because of its complexity. Fuzzy logic provides an interesting means to deal with such information, since it allows us to represent imprecise, vague or incomplete descriptions, which are very common in the management of subjective information. Aggregation methods proposed by fuzzy logic are further useful to combine the characteristics of the various components of sensorial information.
基金supported by the National Natural Science Foundation of China(6167138461703338)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM6018)the Project of Science and Technology Foundationthe Fundamental Research Funds for the Central Universities(3102017OQD020)
文摘Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.
文摘The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.
文摘in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.