Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span&g...Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.展开更多
Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by eithe...Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by either a non-magnetic or strong ferromagnetic material having a U profile is numerically investigated. Computations are carried out through the finite-element method. The alternating-current losses do not increase significantly if the relative permeability of the coating is increased three orders of magnitude, provided that the current amplitude is less than half of the critical current in a superconducting wire. However, the losses are much higher for ferromagnetic coating if the amplitude of the applied current oscillating at 50 Hz is close to the critical current. The ferromagnetic coating is seen to accumulate the magnetic field lines normally on its surfaces, while the field lines are parallel to the long axes of the wires, leading to more significant flux penetration in the coated regions. This facilitates a uniform low-loss current flow in the uncoated regions of the wires. In contrast, coating with a non-magnetic material gives rise to a considerably smaller current flow in the uncoated regions, whereas the low-loss flow is maintained in the coated regions. Moreover, the current flows in opposite directions in the coated and uncoated regions, where the direction in each region is converse for the two materials.展开更多
Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial val...Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.展开更多
In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm opti...In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.展开更多
The formulation and solution of governing equations that can be used to analyse the three dimensional behaviour of elastic towing cables subjected to arbitrary sheared currents were presented in this paper. The elasti...The formulation and solution of governing equations that can be used to analyse the three dimensional behaviour of elastic towing cables subjected to arbitrary sheared currents were presented in this paper. The elastic cable geometry was described in terms of two angles, elevation and azimuth, which are related to Cartesian co ordinates by geometry compatibility relations. These relations were combined with the cable equilibrium equations to obtain a system of non-linear differential equations. In the end, results for cable tension, angles, geometry and elongation are presented for example cases.展开更多
Induction motor drive systems fed by cables are widely used in industrial applications. However, high-frequency switching of power devices will cause common-mode(CM) voltages during operation, leading to serious CM ...Induction motor drive systems fed by cables are widely used in industrial applications. However, high-frequency switching of power devices will cause common-mode(CM) voltages during operation, leading to serious CM currents in the motor drive systems. CM currents through the cables and motors in the drive systems can cause electromagnetic interference(EMI) with the surrounding electronic equipment and shorten the life of induction motors. Therefore, it is necessary to analyze the CM currents in motor drive systems. In this paper, high-frequency models of unshielded and shielded power cables are formulated. The frequency-dependent effects and mutual inductances of the cables are taken into account. The power cable parameters are extracted by the finite element method and validated by measurements. High-frequency models of induction motors and inverters are introduced from existing works. The CM currents at the motor and inverter terminals are obtained, and the influence of the cable length and cable type on the CM currents is analyzed. There is a good agreement between the experimental results and the CM currents predicted by the proposed models.展开更多
The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding curren...The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.展开更多
Background A strong electromagnetic force is the major cause of vibration in dipole power supply cables.Moreover,the long-term operation of cables under vibration conditions leads to structural fatigue failure.Purpose...Background A strong electromagnetic force is the major cause of vibration in dipole power supply cables.Moreover,the long-term operation of cables under vibration conditions leads to structural fatigue failure.Purpose and methods To investigate the cable-laying scheme of a dipole power supply,a finite element model for the electromagnetic–structural coupling between cables and cleats was established.The electrodynamic forces were simulated for fixed-length cables in the horizontal,vertical,and bent models under pulse-current excitation.Subsequently,based on the optimized arrangement mode,the deformation of the cables and the stresses of the cleats were obtained.Results A small cable electrodynamic force was observed in the positive–negative interlace arrangement,and the cable deformation was caused by electrodynamic forces.The maximum cleat deformation occurred at the position with the largest electrodynamic force,where the cleats were reinforced.Moreover,the mechanical characteristics of the cables and cleats under pulse-current excitation are described intuitively and quantitatively,providing theoretical support for the cable-laying scheme of the dipole power supply.展开更多
Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
Substations have a large number of signal transmission cables beneath the ground.Both the insulation safety and signal reliability of the cables are affected severely by the electromagnetic field.Under high-amplitude ...Substations have a large number of signal transmission cables beneath the ground.Both the insulation safety and signal reliability of the cables are affected severely by the electromagnetic field.Under high-amplitude impulsive currents,the dispersion of currents can cause soil discharge and thus cause unexpected distortions in an electromagnetic field.This paper focuses on the distortions of the electric field.In general,soil discharge channels occur in the vicinity of the independent rod.Closer development of the channel might enhance the electric field distribution and the potential surrounding the outer insulation of the cables(i.e.the surface potential on the cable).Therefore,this paper establishes a platform for observing the soil discharge channel and measuring the surface potential.Direction characteristic of the channel is extracted from the captured image of soil discharge channels and the surface potential is obtained by the measured coupling capacitive current on the shield experimentally.This paper also presents an improved model considering a dynamic growing discharge channel for the transient analysis of the grounding electrode.Study results show the surface potential increases as the discharge channel approaches the cable.To quantify this enhancement effect,the ratio of the highest to the lowest value of surface potential in different directions is taken as the multiple of the surface potential increase.The calculated multiples of the surface potential increase are in the range of 1 to 1.64 times under different conditions by the improved model.Therefore,taking the soil discharge channel into account is helpful to accurately analyze the impulsive interference of buried cables.展开更多
Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu...Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.展开更多
DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researche...DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.展开更多
Generally,the flow of a lightning impulse current from a grounding electrode into ground is a very complicated process determined by many factors.In order to analyze the mechanism of the impulse current dissipating in...Generally,the flow of a lightning impulse current from a grounding electrode into ground is a very complicated process determined by many factors.In order to analyze the mechanism of the impulse current dissipating in the earth from grounding electrode,the experiments that had been carried out by other authors almost used a single horizontal grounding wire or vertical grounding rod for sake of simplicity.However,in practical conditions,most of the grounding systems are constructed of grounding electrodes with branches in different directions.In this study,basing on the principle of dimensional similarity,impulse simulation experiments are performed on the common ground electrodes with conductor branches.This paper focuses on analyzing the impulse current dispersal regularity of different branches when injecting at one point.Comparing with the leakage current distribution of a single ground electrode,it is found that the leakage currents along the branches increase with the distance to the current feed point,and the more conductors near the injection point,the more uneven the leakage current distribution is.This work indicates that shielding effect should be taken into account when analyzing the impulse characteristics of grounding electrodes.展开更多
Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC s...Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC system,such as DC bias,corrosion of metal underground and so on.DC bias is harm to the transformers nearby UHVDC grounding polar.In this paper,the influences of DC grounding current on transformer are introduced and some suggestions of DC bias solution were provided.And,the relationship between UHVDC Grounding Current and grounding Resistance of Substation was analyzed.Firstly,two-part network circuit was used to equivalent the grounding circuit.Then,an analysis of rules was done between DC bias current and grounding resistance.Finally,the conclusion is given that DC bias current rises fast as DC grounding resistance or AC grounding resistance rises.It drops when resistance of AC transmission line or interaction resistance between DC grounding system and AC grounding system rises.Decreasing AC grounding resistance and DC grounding resistance is important to restrain DC bias current.Increasing resistance of AC transmission line such as adding resistance into transformer neutral-point grounding is a useful way to limit DC bias current.展开更多
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
文摘Insulated underground cables have the potential to reduce power outages, maintenance costs, and transmission losses compared to overhead lines.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">On the other hand, they are exposed to several risks and physical damages, since they are buried in the ground. Though the cables are armoured in order to provide mec</span><span style="font-family:Verdana;">hanical protection and achieve tensile strength, and also to provide effective conductance of earth fault currents.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The main purpose of this paper is to introduce insulated underground cables, armouring process, and to analyze the induced currents in metallic parts such as sheath and armour </span><span style="font-family:Verdana;">that causeohmic losses which are categorized mainly in two groups as circulating current and eddy current. This paper presents a review on analytical techniques used to analyze the effect of magnetic fields, andcalculate the losses in </span><span style="font-family:Verdana;">the armour of the cables,</span><span style="font-family:""> </span><span style="font-family:Verdana;">besides providing the strategies and solutions used for armour loss reduction.
基金Project supported by the Fund from the Scientific and Technological Research Council of Turkey(TüB˙ITAK)(Grant No.110T876)
文摘Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by either a non-magnetic or strong ferromagnetic material having a U profile is numerically investigated. Computations are carried out through the finite-element method. The alternating-current losses do not increase significantly if the relative permeability of the coating is increased three orders of magnitude, provided that the current amplitude is less than half of the critical current in a superconducting wire. However, the losses are much higher for ferromagnetic coating if the amplitude of the applied current oscillating at 50 Hz is close to the critical current. The ferromagnetic coating is seen to accumulate the magnetic field lines normally on its surfaces, while the field lines are parallel to the long axes of the wires, leading to more significant flux penetration in the coated regions. This facilitates a uniform low-loss current flow in the uncoated regions of the wires. In contrast, coating with a non-magnetic material gives rise to a considerably smaller current flow in the uncoated regions, whereas the low-loss flow is maintained in the coated regions. Moreover, the current flows in opposite directions in the coated and uncoated regions, where the direction in each region is converse for the two materials.
文摘Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems,the steady state problem can be resolved into two-point boundary-value problem,or initial value problem in some special cases where the initial values are available directly.A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency.First,the boundary conditions are transformed into a set of nonlinear governing equations about the initial values,then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method.In common sense,non-uniform (sheared) current is assumed,which varies in magnitude and direction with depth.The schemes are validated through the DE Zoysa's example,then several numerical examples are also presented to illustrate the numerical schemes.
文摘In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multilayer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.
文摘The formulation and solution of governing equations that can be used to analyse the three dimensional behaviour of elastic towing cables subjected to arbitrary sheared currents were presented in this paper. The elastic cable geometry was described in terms of two angles, elevation and azimuth, which are related to Cartesian co ordinates by geometry compatibility relations. These relations were combined with the cable equilibrium equations to obtain a system of non-linear differential equations. In the end, results for cable tension, angles, geometry and elongation are presented for example cases.
基金Project supported by the National Natural Science Foundation of China(No.51577172)
文摘Induction motor drive systems fed by cables are widely used in industrial applications. However, high-frequency switching of power devices will cause common-mode(CM) voltages during operation, leading to serious CM currents in the motor drive systems. CM currents through the cables and motors in the drive systems can cause electromagnetic interference(EMI) with the surrounding electronic equipment and shorten the life of induction motors. Therefore, it is necessary to analyze the CM currents in motor drive systems. In this paper, high-frequency models of unshielded and shielded power cables are formulated. The frequency-dependent effects and mutual inductances of the cables are taken into account. The power cable parameters are extracted by the finite element method and validated by measurements. High-frequency models of induction motors and inverters are introduced from existing works. The CM currents at the motor and inverter terminals are obtained, and the influence of the cable length and cable type on the CM currents is analyzed. There is a good agreement between the experimental results and the CM currents predicted by the proposed models.
基金The financial support from the National Natural Science Foundation of China (No. 51107143)
文摘The way of neutral point to earth via full compensation arc suppression coil can solve the problem of residual current compensation in coal mine power network effectively. Based on the analysis on the grounding current detection results of Xieqiao coal mine, the conclusion that harmonic component of grounding current is dominated by higher harmonics with complex harmonic sources in coal mine power network system was obtained. The influences of harmonic source type and fault point position on harmonic voltage and harmonic current were analyzed theoretically. The influences of earthed fault feeder detection result and the estimation errors of parameters to earth on residual current compensation were analyzed. A new thought of residual current prediction and the selections of model method and control method were proposed on this basis. The simulation results prove that harmonic amplitudes of zero sequence voltage and zero sequence current are determined by harmonic source type as well as fault point position in coal mine power network, and also prove that zero sequence voltage detection can avoid the unstable problem of coal mine power network system caused by undercompensation of capacitive current. Finally, the experimental device of full compensation arc suppression coil is introduced.
文摘Background A strong electromagnetic force is the major cause of vibration in dipole power supply cables.Moreover,the long-term operation of cables under vibration conditions leads to structural fatigue failure.Purpose and methods To investigate the cable-laying scheme of a dipole power supply,a finite element model for the electromagnetic–structural coupling between cables and cleats was established.The electrodynamic forces were simulated for fixed-length cables in the horizontal,vertical,and bent models under pulse-current excitation.Subsequently,based on the optimized arrangement mode,the deformation of the cables and the stresses of the cleats were obtained.Results A small cable electrodynamic force was observed in the positive–negative interlace arrangement,and the cable deformation was caused by electrodynamic forces.The maximum cleat deformation occurred at the position with the largest electrodynamic force,where the cleats were reinforced.Moreover,the mechanical characteristics of the cables and cleats under pulse-current excitation are described intuitively and quantitatively,providing theoretical support for the cable-laying scheme of the dipole power supply.
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported by the National Natural Science Foundation of China(51777020)supported by the Science and Technology Project of State Grid Corporation of China(“Study on the Transient Characteristics of Grounding System and the Test and Evaluation Method of Current Dispersion Performance Under the Successive Impulse Current”,5500-202026088A-0-0-00)。
文摘Substations have a large number of signal transmission cables beneath the ground.Both the insulation safety and signal reliability of the cables are affected severely by the electromagnetic field.Under high-amplitude impulsive currents,the dispersion of currents can cause soil discharge and thus cause unexpected distortions in an electromagnetic field.This paper focuses on the distortions of the electric field.In general,soil discharge channels occur in the vicinity of the independent rod.Closer development of the channel might enhance the electric field distribution and the potential surrounding the outer insulation of the cables(i.e.the surface potential on the cable).Therefore,this paper establishes a platform for observing the soil discharge channel and measuring the surface potential.Direction characteristic of the channel is extracted from the captured image of soil discharge channels and the surface potential is obtained by the measured coupling capacitive current on the shield experimentally.This paper also presents an improved model considering a dynamic growing discharge channel for the transient analysis of the grounding electrode.Study results show the surface potential increases as the discharge channel approaches the cable.To quantify this enhancement effect,the ratio of the highest to the lowest value of surface potential in different directions is taken as the multiple of the surface potential increase.The calculated multiples of the surface potential increase are in the range of 1 to 1.64 times under different conditions by the improved model.Therefore,taking the soil discharge channel into account is helpful to accurately analyze the impulsive interference of buried cables.
文摘Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness.
文摘DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.
基金Project Supported by National Natural Science Foundation of China(50707036), Key Project of the National Eleventh-five Year Research Program of China ( 2006BAA02A18).
文摘Generally,the flow of a lightning impulse current from a grounding electrode into ground is a very complicated process determined by many factors.In order to analyze the mechanism of the impulse current dissipating in the earth from grounding electrode,the experiments that had been carried out by other authors almost used a single horizontal grounding wire or vertical grounding rod for sake of simplicity.However,in practical conditions,most of the grounding systems are constructed of grounding electrodes with branches in different directions.In this study,basing on the principle of dimensional similarity,impulse simulation experiments are performed on the common ground electrodes with conductor branches.This paper focuses on analyzing the impulse current dispersal regularity of different branches when injecting at one point.Comparing with the leakage current distribution of a single ground electrode,it is found that the leakage currents along the branches increase with the distance to the current feed point,and the more conductors near the injection point,the more uneven the leakage current distribution is.This work indicates that shielding effect should be taken into account when analyzing the impulse characteristics of grounding electrodes.
基金Project Supported by National Natural Science Foundation of China( 10476022 ).
文摘Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC system,such as DC bias,corrosion of metal underground and so on.DC bias is harm to the transformers nearby UHVDC grounding polar.In this paper,the influences of DC grounding current on transformer are introduced and some suggestions of DC bias solution were provided.And,the relationship between UHVDC Grounding Current and grounding Resistance of Substation was analyzed.Firstly,two-part network circuit was used to equivalent the grounding circuit.Then,an analysis of rules was done between DC bias current and grounding resistance.Finally,the conclusion is given that DC bias current rises fast as DC grounding resistance or AC grounding resistance rises.It drops when resistance of AC transmission line or interaction resistance between DC grounding system and AC grounding system rises.Decreasing AC grounding resistance and DC grounding resistance is important to restrain DC bias current.Increasing resistance of AC transmission line such as adding resistance into transformer neutral-point grounding is a useful way to limit DC bias current.