期刊文献+
共找到1,499篇文章
< 1 2 75 >
每页显示 20 50 100
Study on a conical bearing for acceleration-sensitive equipment
1
作者 Pang Hui Xu Wen +1 位作者 Dai Junwu Jiang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期103-128,共26页
Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-s... Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments. 展开更多
关键词 seismic isolation acceleration-sensitive equipment the conical pendulum bearing shake table tests isolation performance numerical model
下载PDF
Seismic Response Analysis of Steel Structure Isolation System Under Long-Period Seismic Motion
2
作者 Long Yu Mei Sheng +1 位作者 Huan Feng Jianan Hu 《Journal of Architectural Research and Development》 2024年第3期147-155,共9页
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis... To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings. 展开更多
关键词 Long-period seismic motion Steel structure Mid-story isolation structure isolation bearing Seismic performance
下载PDF
Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes
3
作者 Ali Mahamied Amjad AYasin +2 位作者 Yazan Alzubi Jamal Al Adwan Issa Mahamied 《Structural Durability & Health Monitoring》 EI 2023年第6期501-519,共19页
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu... Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior. 展开更多
关键词 Reinforced concrete low-rise structure vertical irregularity the influence of pulse-like earthquake characteristics lead rubber bearing isolators nonlinear response history analysis
下载PDF
Three-dimensional seismic isolation bearing and its application in long span hangars 被引量:12
4
作者 Li Xiongyan Xue Suduo Cai Yancheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期55-65,共11页
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ... Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range. 展开更多
关键词 three-dimensional seismic isolation bearing (3DSIB) seismic isolation HANGAR axial force acceleration response
下载PDF
Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges 被引量:11
5
作者 Peng, Tianbo Yu, Xuntao +1 位作者 Wang, Zhennan Han, Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期163-172,共10页
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat... The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges. 展开更多
关键词 double spherical seismic isolation (DSSI) bearing seismic isolation seismic performance continuous girder bridge
下载PDF
Study on the seismic performance of a double spherical seismic isolation bearing 被引量:4
6
作者 Peng Tianbo Li Jianzhong Xu Yan Fan Lichu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期439-446,共8页
In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sli... In this paper, the configuration and working mechanism of the recently developed double spherical seismic isolation (DSSI) bearing are introduced in detail. Then, vertical displacement of the DSSI bearing due to sliding on a spherical surface is analyzed. The results from seismic performance testing of the bearing are given, and a numerical analysis of a four span continuous girder bridge is performed. The numerical analysis compares the influence of three different bearing arrangement schemes on the structural seismic response, and the results show that the DSSI bearing is effective in increasing the vertical load bearing capacity, reducing the vertical displacement, and controlling the energy dissipation capacity within a certain range. 展开更多
关键词 DSSI bearing seismic isolation vertical displacement energy dissipation continuous girder bridges
下载PDF
A Study on the Seismic Isolation Systems of Bridges with Lead Rubber Bearings 被引量:1
7
作者 Woo-Suk Kim Dong-Joon Ahn Jong-Kook Lee 《Open Journal of Civil Engineering》 2014年第4期361-372,共12页
This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is dev... This study consists of the development and presentation of example of seismic isolation system analysis and design for a continuous, 3-span, cast-in-place concrete box girder bridge. It is expected that example is developed for all Lead-Rubber Bearing (LRB) seismic isolation system on piers and abutments which placed in between super-structure and sub-structure. Design forces, displacements, and drifts are given distinctive consideration in accordance with Caltrans Seismic Design Criteria (2004). Most of all, total displacement on design for all LRBs case is reduced comparing with combined lead-rubber and elastomeric bearing system . Therefore, this represents substantial reduction in cost because of reduction of expansion joint. This presents a summary of analysis and design of seismic isolation system by energy mitigation with LRB on bridges. 展开更多
关键词 SEISMIC isolation System Bridge Lead Rubber bearing (LRB) Energy MITIGATION
下载PDF
Numerical Analysis of Seismic Elastomeric Isolation Bearing in the Base-Isolated Buildings
8
作者 M. Jabbareh Asl M. M. Rahman A. Karbakhsh 《Open Journal of Earthquake Research》 2014年第1期1-4,共4页
Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of ste... Base isolation concept is currently accepted as a new strategy for earthquake resistance structures. According to different types of base isolation devices, laminated rubber bearing which is made by thin layers of steel shims bonded by rubber is one of the most popular devices to reduce the effects of earthquake in the buildings. Laminated rubber bearings should be protected against failure or instability because failure of isolation devices may cause serious damage on the structures. Hence, the prediction of the behaviour of the laminated rubber bearing with different properties is essential in the design of a seismic bearing. In this paper, a finite element modeling of the laminated rubber bearing is presented. The procedures of modeling the rubber bearing with finite element are described. By the comparison of the numerical and the experimental, the validities of modelling and results have been determined. The results of this study perform that there is a good agreement between finite element analysis and experimental results. 展开更多
关键词 Base-isolated Structure SEISMIC isolation bearing LAMINATED Rubber bearing FINITE Element Analysis
下载PDF
Peculiarities of Calculating Bridges with Seismic Isolation Including Spherical Bearings and Hydraulic Dampers in Russia
9
作者 Natalia V. Durseneva Andrey V. Indeykin +2 位作者 Inna O. Kuznetsova Alexander M. Uzdin Maria Fedorova 《Journal of Civil Engineering and Architecture》 2015年第4期401-409,共9页
The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Ot... The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Other peculiarities are connected with physical peculiarities of the device behaviour. To provide the analysis of structure hehaviour under the condition of the lack of input information, two types of design models of seismic protection devices were considered. They are the dampers linearization and the modelling of real dampers by dry friction ones. The dampers linearization makes it possible to use the existing software for calculating linear strongly-damped systems. To calculate structures with dry friction dampers, a new software was worked out. In this case, the structure is described as a piecewise-linear system of a relay-type. The investigations of the structure oscillations take into account both horizontal and vertical components of earthquake input. Under this condition, horizontal oscillation equations of structures are the MaRie-Hill ones. The input and structure parameters which caused the structure instability are estimated. To exclude the structure instability, high damping devices should be used. These methods were used for seismic resistant analysis of bridges with spherical bearings and hydraulic dampers applied in Sochi. 展开更多
关键词 Seismic isolation spherical bearings hydraulic dampers calculations.
下载PDF
Effects of Bearing Type on Seismic Response of Small Base Isolation System Using Friction Bearings
10
作者 Katsumi Kurita Mikito Kezuka +3 位作者 Shigeru Aoki Yuuj i Nakanishi Kazutoshi Tominaga Mitsuo Kanazawa 《Journal of Civil Engineering and Architecture》 2014年第3期261-267,共7页
In this study, dynamic characteristics of the small base isolation system using new friction bearings are investigated by excitation experiment, and compared to other one using previous bearings. Peak amplitude of the... In this study, dynamic characteristics of the small base isolation system using new friction bearings are investigated by excitation experiment, and compared to other one using previous bearings. Peak amplitude of the acceleration response waves on the small base isolation system is decreased to about 10%-25% compared to the input waves. Also root mean square amplitude is decreased to about 10%-40%. In case of the ball embedded a cylindrical sponge, the new bearing, the damping ratio increases with increasing width of the cylindrical sponge. The natural frequency does not change. On the other hand, in case of the marble plate that is previous bearing, the damping ratio increases with increasing curvature radius of the marble plate, the natural frequency also increases. Therefore, the small base isolation system using new friction bearing provides better performance. The responses of the base isolation system indicate nonlinier effects by friction force. 展开更多
关键词 Small base isolation system friction bearing peak amplitude natural frequency damping ratio.
下载PDF
Seismic performance of cable-sliding friction bearing system for isolated bridges 被引量:7
11
作者 Cheung Pakchiu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期173-183,共11页
During past strong earthquakes, highway bridges have sustained severe damage or even collapse due to excessive displacements and/or very large lateral forces. For commonly used isolation bearings with a pure friction ... During past strong earthquakes, highway bridges have sustained severe damage or even collapse due to excessive displacements and/or very large lateral forces. For commonly used isolation bearings with a pure friction sliding surface, seismic forces may be reduced but displacements are often unconstrained. In this paper, an alternative seismic bearing system, called the cable-sliding friction bearing system, is developed by integrating seismic isolation devices with displacement restrainers consisting of cables attached to the upper and lower plates of the bearing. Restoring forces are provided to limit the displacements of the sliding component. Design parameters including the length and stiffness of the cables, friction coefficient, strength of the shear bolt in a fixed-type bearing, and movements under earthquake excitations are discussed. Laboratory testing of a prototype bearing subjected to vertical loads and quasi-static cyclic lateral loads, and corresponding numerical finite element simulation analysis, were carried out. It is shown that the numerical simulation shows good agreement with the experimental force-displacement hysteretic response, indicating the viability of the new bearing system. In addition, practical application of this bearing system to a multi-span bridge in China and its design advantages are discussed. 展开更多
关键词 isolated bridge cable-sliding friction bearing isolation device seismic performance restrained displacement earthquake damage
下载PDF
Development of a modified Mooney-Rivlin constitutive model for rubber to investigate the effects of aging and marine corrosion on seismic isolated bearings 被引量:10
12
作者 Zhao Guifeng Ma Yuhong +2 位作者 Li Yanmin Luo Jiarun Du Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期815-826,共12页
In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been d... In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been determined. By applying the least-square method to the experimental data, the relationships between the aging time and the marine corrosion time with the constants in the constitutive model for a rubber beating have been derived. Next, the Mooney-Rivlin model has been modified accordingly. Further, using the modified Mooney-Rivlin model and the Abaqus software, the performance of the rubber isolated bearings has been simulated. The simulation results have been compared to the experimental results so as to verify the accuracy of the modified model. The comparison shows that the maximum errors for the vertical and horizontal stiffnesses are 16.8% and 0.49%, respectively. Since these errors are considered acceptable, the accuracy of the modified constitutive model can be considered verified. The results of this study can provide theoretical support for the performance study on rubber isolated bearings under the complex ocean environment and the life-cycle performance evaluation of bridges and other offshore structures. 展开更多
关键词 isolated rubber bearing marine corrosion AGING Mooney-Rivlin model finite element analysis
下载PDF
Real-Time Hybrid Simulation of Seismically Isolated Structures with Full-Scale Bearings and Large Computational Models 被引量:3
13
作者 Alireza Sarebanha Andreas H.Schellenberg +2 位作者 Matthew J.Schoettler Gilberto Mosqueda Stephen A.Mahin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期693-717,共25页
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ... Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response. 展开更多
关键词 Real-time hybrid simulation SEISMIC isolation PARALLEL processing full SCALE bearing experimental testing
下载PDF
Effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings 被引量:2
14
作者 Wang Changfeng Zhao Jikang +1 位作者 Zhu Long Bao Yijun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期187-196,共10页
A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic perform... A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings and different bearing friction coefficients and different stiffness levels (pier diameter) are discussed using example calculations, and the effects of excitation direction for vertical excitation on the analysis results are explored. The analysis results shows that vertical excitation has a relatively large impact on seismic performance for a seismically isolated bridge with sliding friction bearings, which should be considered when designing a seismically isolated bridge with sliding friction bearings where vertical excitation dominates. 展开更多
关键词 vertical excitation seismically isolated bridge sliding friction bearing seismic analysis
下载PDF
Seismic response of selective pallet racks isolated with friction pendulum bearing system
15
作者 Bennet A.Ipe Sajith A.S. 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1069-1088,共20页
The concept of base isolation for storage racks is still a developing subject and has not been addressed in the recently updated seismic codes for storage racks.The friction pendulum bearing system(FPS)generates a nat... The concept of base isolation for storage racks is still a developing subject and has not been addressed in the recently updated seismic codes for storage racks.The friction pendulum bearing system(FPS)generates a natural period independent of the structure's seismic mass.This property makes FPS an ideal choice for isolating rack structures since merchandise may be placed on the racks in several possible arrangements.The results of a comprehensive parametric study aimed at evaluating the seismic performance of a four-shelf,two-bay selective pallet rack isolated with FPS is presented in this paper.The influence of radius of curvature of the FPS,seismic mass,and mass irregularity on the rack's seismic response is examined.The effect of variation of the coefficient of friction due to axial loading is studied by choosing friction values from two distinct friction characterization studies.The coefficient of friction calculated from these studies shows mild and significant variations,respectively,for the whole range of static axial loads expected on the isolator,and from different pallet mass arrangements considered.The optimum radius of curvature and the appropriate range of friction coefficient,for the defined range of static axial loads,to attain a desirable seismic performance are determined. 展开更多
关键词 selective pallet racks base isolation friction pendulum bearing system cross-aisle direction
下载PDF
Study on the Influence of Aspect Ratio on the Seismic Response and Overturning Resistance of a New Staggered Story Isolated Structure
16
作者 Tiange Zhao Dewen Liu 《World Journal of Engineering and Technology》 2024年第3期617-634,共18页
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif... The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases. 展开更多
关键词 Aspect Ratio A New Staggered Story isolated Structure Seismic Response Overturning Resistance Ratio isolated bearing
下载PDF
Application of LRB isolation technology in continuous girder bridges
17
作者 刘文静 李黎 叶昆 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期196-200,共5页
This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite elemen... This paper summarizes the superiority of lead-rubber beating (LRB) continuous girder bridges. The research method for isolation performance is discussed when pile-soil interaction is considered. By the finite element method and self-compiling program, a systematic study of the reliability of LRB continuous girder bridges is given by the use of different indicators, including the riding comfort of the LRB system, the pounding and dynamic stability when the LRB system is subjected to seismic excitations, and the reliability of the LRB system when subjected to other common horizontal loads. The results show that the LRB system has obvious advantages over the traditional continuous girder structure. The LRB isolation effect remains good even when pile-soil interaction is considered; the vertical rigidity of the LRB guarantees desirable riding comfort. The LRB demonstrates good reliability when subjected to the effects of braking, wind loads and temperature. However, it is also pointed out that the pounding of the LRB system subjected to earthquakes must be avoided, and the dynamic stability may be reduced when the LRB system has higher piers and generates a larger displacement in a strong earthquake. Useful advice and guidance are proposed for engineering application. 展开更多
关键词 lead-robber bearing LRB)- isolation technology continuous girder bridge
下载PDF
Experimental and numerical study on hysteretic performance of SMA spring-friction bearings 被引量:2
18
作者 Zhuang Peng Xue Suduo +1 位作者 Nie Pan Wang Wenting 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期597-609,共13页
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction b... This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB. 展开更多
关键词 sliding isolation bearing SMA helical spring hysteretic performance quasi-static test theoretical model
下载PDF
Seismic Response Analysis of Structure with Cooperation of Laminated Rubber Bearing and Wind-Resistant Support 被引量:2
19
作者 吴应雄 王兆樑 +1 位作者 林树枝 林婷婷 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期411-417,共7页
The purpose is to study the seismic reduction effect of an isolated structure,with wind-resistant bearings( WRBs) setting on its isolation layer to withstand great wind load,and the working mechanism of the WRB. In th... The purpose is to study the seismic reduction effect of an isolated structure,with wind-resistant bearings( WRBs) setting on its isolation layer to withstand great wind load,and the working mechanism of the WRB. In this paper,two isolation models with /without WRBs,taking an actual engineering as the background,are established in the finite element software ETABS. The one with WRBs has horizontal damping coefficient less than 0. 40 while the other between 0. 40 and 0. 53. WRBs are simulated by Plastic 1element and the collaborative work between them and isolation layer is described by a mechanical model. Time history analysis is conducted on the models to compare their responses under earthquake excitations. Results show that the one with WRBs,but less lead-rubber bearings( LRBs),has better damping effect than the other,although they both can meet wind requirements. It is also shown that under normal conditions and small earthquakes,WRBs function well and the isolation layer will not yield; under moderate earthquakes,WRBs will yield and be destroyed to stop functioning but without affecting the damping effect of the upper structure.Additionally, the total yield shear force provided by LRBs is proposed to be close to the standard value of wind load. 展开更多
关键词 isolation structure wind-resistant bearings(WRBs) cooperation working seismic response
下载PDF
Experimental and Finite Element Analysis for Multi-lead Rubber Bearings:A Comparative Study
20
作者 聂肃非 江宜城 +1 位作者 叶志雄 李黎 《Journal of Southwest Jiaotong University(English Edition)》 2010年第2期134-139,共6页
The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested fo... The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness. 展开更多
关键词 Bridge seismic isolation Multi-lead rubber bearing Nonlinear mechanical properties Experimental study Explicit finite element analysis
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部