期刊文献+
共找到1,267篇文章
< 1 2 64 >
每页显示 20 50 100
Seismic fragility analysis of three-tower cable-stayed bridges with different connection configurations
1
作者 Chen Chen Liu Jinlong +1 位作者 Lin Junqi Li Suchao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1009-1027,共19页
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t... Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges. 展开更多
关键词 seismic fragility cable-stayed bridge connection configuration viscous damper comparison analysis
下载PDF
Mechanical performance evaluation of a new type of cable-stayed beam-arch combination bridge based on field tests 被引量:4
2
作者 马文刚 黄侨 +1 位作者 陈晓强 任远 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期64-72,共9页
In order to study the mechanical performance of a new type of cable-stayed beam-arch combination bridge, the results of field static and dynamic load tests are comparatively analyzed with numerical results based on th... In order to study the mechanical performance of a new type of cable-stayed beam-arch combination bridge, the results of field static and dynamic load tests are comparatively analyzed with numerical results based on the Jingyi bridge straddling the Daxi River in Yixing. First, the test scheme, tasks, the corresponding measure method, as well as the relevant codes are described. Secondly, two sets of three- dimensional finite element models are established. One is Ansys which uses the solid element and the other is Midas which adopts the beam element. Finally, the experimental and analytical results are comparatively analyzed, and they show an agreement with each other. The results show that the bridge possesses adequate load-carrying capacity under all static load cases, but the capacity of dissipating external input energy is insufficient due to the relatively smaller damping ratio. The study results can provide a reference for further study and optimization of this type of bridge. Calibrated finite-element models that reflect the real conditions can be used as a baseline for future maintenance of the bridge. 展开更多
关键词 arch bridge cable-stayed bridge vertical load field test three-dimensional model
下载PDF
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
3
作者 Jielian Zheng 《Engineering》 SCIE EI CAS CSCD 2024年第10期110-129,共20页
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ... Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed. 展开更多
关键词 Concrete-filled steel tubular arch bridges Steel-reinforced concrete arch bridges cable-stayed fastening-hanging cantilevered assembly Non-rocky thrust abutment foundation Stiff skeleton Encasing concrete pouring Longitudinal reinforcement optimization
下载PDF
Data-driven methods for predicting the representative temperature of bridge cable based on limited measured data
4
作者 WANG Fen DAI Gong-lian +2 位作者 HE Chang-lin GE Hao RAO Hui-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3168-3186,共19页
Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai... Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridges representative temperature gradient boosted regression trees(GBRT)method field test limited measured data
下载PDF
Seismic Performance of Prefabricated Continuous Girder Bridge
5
作者 Hongyuan Xiong 《Journal of World Architecture》 2024年第5期42-46,共5页
Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acti... Bearings are the weak link in the seismic design of bridges.Using a continuous girder bridge as an example,it is demonstrated that bearing damage should be considered under large earthquake conditions.The bearing,acting as a fuse-type unit,can be designed to be preferentially damaged to effectively control the displacement of the beam and the response at the base of the pier during an earthquake. 展开更多
关键词 cable-stayed bridge Seismic analysis Dynamic performance Structural design
下载PDF
Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling
6
作者 BIAN Chen-jie DU Li-ming +2 位作者 WANG Ga-ping LI Xin LI Wei-ran 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期85-100,共16页
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u... Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected. 展开更多
关键词 random wind WAVE undercurrent coupling effect Rail-cum-Road cable-stayed bridge dynamic response
下载PDF
Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction
7
作者 Kexin Zhang Xinyuan Shen +1 位作者 Longsheng Bao He Liu 《Structural Durability & Health Monitoring》 EI 2023年第2期131-158,共28页
In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge st... In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges. 展开更多
关键词 cable-stayed bridge corrugated steel web construction monitoring static load test dynamic load test
下载PDF
Design Technology of Continuous Beam-Arch Combination Bridges
8
作者 Maozhao Yang 《Journal of Architectural Research and Development》 2023年第2期6-10,共5页
In this paper,a research was conducted on the design technology of continuous beam-arch composite bridges.A brief introduction is given on the of continuous beam-arch composite bridges,its basic mechanical characteris... In this paper,a research was conducted on the design technology of continuous beam-arch composite bridges.A brief introduction is given on the of continuous beam-arch composite bridges,its basic mechanical characteristics is analyzed,and three aspects of design technology is studied,which are rise-span ratio,stiffness ratio,and bridge deck cracking.This article acts as a reference for relevant design units in China to improve the design of continuous beam-arch combination bridges. 展开更多
关键词 Continuous beam-arch combination bridge design Analysis of rise-span ratio bridge deck cracking
下载PDF
Spatial gust impact analysis on safety and comfort of a train crossing cable-stayed bridge combining statistical method 被引量:1
9
作者 ZHANG Yun-fei LI Li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2605-2620,共16页
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi... In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge. 展开更多
关键词 wind-train-bridge dynamic system high-speed train crosswind environment single-tower cable-stayed bridge running safety running stability
下载PDF
Effects of bridge combined internal fixation system internal fixation on fracture healing and shoulder joint function in elderly patients with displaced midshaft clavicle fractures 被引量:1
10
作者 Wang Guang-Xin Xiao Wan-Jun +1 位作者 Wang Chen Liang Qing-Wei 《Journal of Hainan Medical University》 2019年第18期35-39,共5页
Objective:To compare the clinical therapeutic effect of bridge combined internal fixation system and locking compression plate internal fixation in the treatment of displaced midshaft clavicle fractures by emphaticall... Objective:To compare the clinical therapeutic effect of bridge combined internal fixation system and locking compression plate internal fixation in the treatment of displaced midshaft clavicle fractures by emphatically observing fracture healing and shoulder joint function.Methods:Totally 44 elderly patients with Robinson type 2B displaced midshaft clavicle fractures were included from the Department of Orthopaedics,Shenyang Fourth People's Hospital during February 2016 and December 2018,including 23 males and 21 females,mean age(69.8±10.2)years old.The patients were divided into a bridge combined internal fixation system group(bridge group,n=22)and a locking compression plate internal fixation group(plate group,n=22)according to the internal fixation methods.The operation time,intraoperative blood loss,fracture healing time,and postoperative complications were recorded.At 12 months after surgery,the shoulder joint Constant-Murley score and DASH score were used to assess the recovery of joint function.The serum levels of bone turnover biochemical markers procollagen I N-terminal peptide(P1NP),cross-linked Carboxy-terminal telopeptide of typeⅠcollagen(CTX-I),and osteoblast specific factor(OSF)were measured before and 3 months after surgery.Results:The operation time,intraoperative blood loss and fracture healing time of the bridge group were significantly shorter than those of the plate group(P<0.05).Constant scores and DASH scores in the bridge group were significantly better than those of the plate group at 12 months after surgery(P<0.05).Serum levels of CTX-I was significantly decreased,while the P1NP and OSF were significantly increased compared with before surgery in the both groups(P<0.05),and the changes were more obvious in the bridge group(P<0.05).The incidence of complications was similar between the two groups(P<0.05).Conclusion:Compared with the locking plate system,the bridge combined internal fixation system can effectively improve the operation efficiency,have more benefits on fracture healing,better promote the recovery of patients'function,and reduce the failure rate of internal fixation,thus providing a better choice to treat displaced midshaft clavicle fractures by intraoperative internal fixation. 展开更多
关键词 bridge combined INTERNAL FIXATION Locking plate old age Mid-clavicular displacement FRACTURE INTERNAL FIXATION FRACTURE healing shoulder function Bone turnover
下载PDF
PSC Bridge Subjected to Combined Post Tension and Post Compression—A Case Study
11
作者 Sujith Shetty Sundar Suraj Sathyanrayana Rao 《World Journal of Engineering and Technology》 2018年第4期767-779,共13页
Starting from the ideas of Conventional Post Tensioning we present a heuristic argument of advantages of combined actions of post compression along with post tensioned technique for a PSC member through a Design Examp... Starting from the ideas of Conventional Post Tensioning we present a heuristic argument of advantages of combined actions of post compression along with post tensioned technique for a PSC member through a Design Example. Our aim was to assess the characterization of a pre stressed member if it was?to be under the Load effects of post compressing a bar with post tensioned method through hydraulic jacks as the reinforcements in the tensioned zone of conventional PSC bridge were to be compressed in order to induce internal tensile stress similar to internal compressive stresses developed due to conventional post tensioned design. The results ultimately concluded that post compressing a Slender bar by a pre stressing force in the compression zone by a value equal to 0.1?-?0.7 times the pre stressing force in the tension zone would eventually lead to cancelling out of tensile and compressive stresses, thereby forming the desired section which is comparatively smaller in size but can account for sustainability. The anchorage at the top end was?provided by special slender steel rods to eliminate the compressive stresses. All the dead loads?were?counteracted by the action of prestress and the bridge section was able to carry only live load which is deduced through examples in the article. 展开更多
关键词 combined POST Tension and POST Compression PRESTRESS Concrete Design of bridgeS
下载PDF
Segmental Bridges under Combined Torsion, Bending and Shear
12
作者 黄真 刘西拉 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期111-114,共4页
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen... Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made. 展开更多
关键词 unbonded prestressing tendons segmental bridge combined loading of torsion bending and shear
下载PDF
Probability evaluation method for cable safety of long-span cable-stayed bridges 被引量:8
13
作者 朱劲松 肖汝诚 何立志 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期92-97,共6页
A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength... A method of cable safety analysis is proposed for safety evaluation of long-span cable-stayed bridges. The Daniels' effect and the probability of broken wires in the cable are introduced to develop the cable strength model and the reliability assessment technique for long-span cable-stayed bridges based on the safety factors analysis of stay cables in service. As an application of the proposed model, the cable safety reliability of the cable No. 25 of Zhaobaoshan cable-stayed bridge in China is calculated. The effects of various parameters on the estimated cable safety reliability are investigated. The results indicate that the proposed method can be used to assess the safety level of stay cables in cable-stayed bridges effectively. The Daniels' effect should be taken into account for assessment, and the probability of broken wires can be used to simulate the deterioration of stay cables in service. 展开更多
关键词 safety factor PROBABILITY EVALUATION cable-stayed bridge
下载PDF
Application of uncertain type of AHP to condition assessment of cable-stayed bridges 被引量:15
14
作者 黄侨 任远 林阳子 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期599-603,共5页
In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theo... In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges. 展开更多
关键词 cable-stayed bridge condition assessment uncertain type of analytic hierarchy process interval number judgment matrix
下载PDF
Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges 被引量:32
15
作者 戴公连 闫斌 《Journal of Central South University》 SCIE EI CAS 2012年第8期2348-2353,共6页
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini... A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment. 展开更多
关键词 high-speed railway continuously welded track cable-stayed bridge simply-supported beam
下载PDF
Ground motion spatial variability effects on seismic response control of cable-stayed bridges 被引量:13
16
作者 Shehata E. Abdel Raheem Toshiro Hayashikawa Uwe Dorka 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第1期37-49,共13页
The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the ana... The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations. 展开更多
关键词 cable-stayed bridge vibration control earthquake spatial variation seismic design semi-active control
下载PDF
Effects of fundamental factors on coupled vibration of wind-rail vehicle-bridge system for long-span cable-stayed bridge 被引量:10
17
作者 张明金 李永乐 汪斌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1264-1272,共9页
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament... In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind. 展开更多
关键词 wind-vehicle-bridge system coupled vibration long-span cable-stayed bridge fundamental factors
下载PDF
Semi-active control of a cable-stayed bridge under multiple-support excitations 被引量:6
18
作者 代泽兵 黄金枝 王红霞 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2004年第3期68-76,共9页
This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are pr... This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a con-trollable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations. 展开更多
关键词 cable-stayed bridge Multiple-support excitation MR damping SEMI-ACTIVE control
下载PDF
Numerical simulation of dynamic characteristics of a cable-stayed aqueduct bridge 被引量:8
19
作者 LiYuchun Di Qingshuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期569-579,共11页
In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aquedu... In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aqueduct deck, filled water, cables and support towers, respectively. A multi-element cable formulation is introduced to simulate the cable vibration. The dry (without water) and wet (with water) modes of the aqueduct bridge are both extracted and investigated in detail. The dry modes of the aqueduct bridge are basically similar to those of highway cable-stayed bridges. A dry mode may correspond to two types of wet modes, which are called the in-phase (with lower frequency) and out-of-phase (with higher frequency) modes. When the water-structure system vibrates in the in-phase/out-of-phase modes, the aqueduct deck moves and water sloshes in the same/opposite phase-angle, and the sloshing water may take different surface-wave modes. The wet modes of the system reflect the properties of interaction among the deck, towers, cables and water. The in-phase wet frequency generally decreases as the water depth increases, and the out-of-phase wet frequency may increase or decrease as the water depth increases. 展开更多
关键词 cable-stayed aqueduct bridge dynamic characteristics fluid-structure interaction numerical simulation
下载PDF
Optimization of Dead Load State in Earth-Anchored Cable-Stayed Bridges 被引量:4
20
作者 Bin Sun Rucheng Xiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第3期87-94,共8页
In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasibl... In order to determine the reasonable completed dead load state in earth-anchored cable-stayed bridges,a practical method is proposed. The method is based on the rigidly supported continuous beam method and the feasible zone method,emphasizing on the mutual effect between the self-anchored structural parts and the earth-anchored ones. Three cable-stayed bridge models are designed with the main spans of 1 400 m,including a partially earth-anchored cable-stayed bridge,a cable-stayed-suspension bridge and a fully selfanchored cable-stayed bridge,in which the C50 concrete and Q345 steel are adopted. The partially earthanchored cable-stayed bridge and the cable-stayed-suspension bridge secure lower compressive force in the girder than the fully self-anchored cable-stayed bridge by 25 percent at least. The same is for the material consumption of the whole bridge. Furthermore,the anchor volume is more than 20% lower in the partially earthanchored cable-stayed bridge than that in the cable-stayed-suspension bridge. Consequently,the practical span of cable-stayed bridges can be accordingly extended. 展开更多
关键词 cable-stayed bridge partially earth-anchored cable-stayed bridge cable-stayed-suspension bridge REASONABLE completed dead load STATE
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部