期刊文献+
共找到9,177篇文章
< 1 2 250 >
每页显示 20 50 100
Health Monitoring-Based Assessment of Reinforcement with Prestressed Steel Strand for Cable-Stayed Bridge
1
作者 Kexin Zhang Tianyu Qi +2 位作者 Dachao Li Xingwei Xue Yanfeng Li 《Structural Durability & Health Monitoring》 EI 2022年第1期53-80,共28页
This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Stati... This paper presents the method of reinforcing main girder of reinforced concrete cable-stayed bridge with prestressed steel strands.To verify the effectiveness of external prestressed strand reinforcement method.Static load tests and health monitoring-based assessment were carried out before and after reinforcement.Field load test shows that the deflection and stress values of the main girder are reduced by 10%~20%after reinforcement,and the flexural strength and stiffness of the strengthened beam are improved.The deflection and strain data of health monitoring of the specified section are collected.The deflection of the second span is 4 mm~10 mm,the strain range of the upper edge of the second span is-10με~-40με,and the strain range of the lower edge is 30με~75με.These values show the deflection and strain values fluctuate within a prescribed range,verifying the safety of the bridge.The reinforcement method of prestressed steel strand is feasible and effective.It can provide reference basis for the application of external prestressed strand reinforcement technology in similar projects. 展开更多
关键词 Prestressed steel strand reinforcement cable-stayed bridge load testing health monitoring
下载PDF
Nonlinear behavior of concrete beams with hybrid FRP and stainless steel reinforcements 被引量:2
2
作者 方志 龚畅 +1 位作者 杨剑 CAMPBELL T I 《Journal of Central South University》 SCIE EI CAS 2009年第3期495-502,共8页
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified... The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity. 展开更多
关键词 beam fiber reinforced polymer (FRP) stainless steel PRESTRESS DEFORMABILITY reinforcement
下载PDF
Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction
3
作者 Kexin Zhang Xinyuan Shen +1 位作者 Longsheng Bao He Liu 《Structural Durability & Health Monitoring》 EI 2023年第2期131-158,共28页
In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge st... In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges. 展开更多
关键词 cable-stayed bridge corrugated steel web construction monitoring static load test dynamic load test
下载PDF
Assessment of Deviation in Quality of Steel Reinforcing Bars Used in Some Building Sites in Cameroon
4
作者 Patrick Che Bame Bell Emmanuel Yamb Billong Ndigui 《World Journal of Engineering and Technology》 2023年第4期917-931,共15页
The present work evaluated the deviations in the quality of steel reinforcing bars in terms of markings, diameter, yield strength and ductility in order to facilitate the drawing up of a yield strength value for the C... The present work evaluated the deviations in the quality of steel reinforcing bars in terms of markings, diameter, yield strength and ductility in order to facilitate the drawing up of a yield strength value for the Cameroon National Annex to Eurocode 2. The methodology of the work started with the collection of steel samples from various active building project sites in four different towns viz: Bamenda, Douala, Maroua and Yaoundé and testing their tensile strength and elongation using a Universal Testing Machine and also carrying out the bending test. Results show that bars without marked manufacturer’s name fell all the tests. Other results show that 52% of all the steel had yield stresses below 400 Mpa and the highest deviation in the yield strengths was 22.50%. The study recommends that properly marked grade 500 steel bars should be adopted in the Cameroon national annex to Eurocode 2. 展开更多
关键词 Eurocode 2 National Annex reinforcement steel DEVIATIONS Yield Strengths
下载PDF
The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures 被引量:1
5
作者 Bozabe Renonet Karka Bassa Bruno +1 位作者 Nadjitonon Ngarmaïm Alladjo Rimbarngaye 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期1-21,共21页
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s... Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion. 展开更多
关键词 reinforced Concrete Construction steel-Concrete Interface Corrosion Degradation Rate ADHESION Bearing Capacity
下载PDF
Quantitative Detection of Corrosion State of Concrete Internal Reinforcement Based on Metal Magnetic Memory
6
作者 Zhongguo Tang Haijin Zhuo +3 位作者 Beian Li Xiaotao Ma Siyu Zhao Kai Tong 《Structural Durability & Health Monitoring》 EI 2023年第5期407-431,共25页
Corrosion can be very harmful to the service life and several properties of reinforced concrete structures.The metal magnetic memory(MMM)method,as a newly developed spontaneous magnetic flux leakage(SMFL)non-destructi... Corrosion can be very harmful to the service life and several properties of reinforced concrete structures.The metal magnetic memory(MMM)method,as a newly developed spontaneous magnetic flux leakage(SMFL)non-destructive testing(NDT)technique,is considered a potentially viable method for detecting corrosion damage in reinforced concrete members.To this end,in this paper,the indoor electrochemical method was employed to accelerate the corrosion of outsourced concrete specimens with different steel bar diameters,and the normal components Bz and its gradient of the SMFL fields on the specimen surfaces were investigated based on the metal magnetic memory(MMM)method.The experimental results showed that the SMFL experimental Bz curves are consistent with the analytical results of the theoretical model.Furthermore,the crest-to-trough behavior on the Bz signal curve and its zero-point gradient spacing can more accurately indicate the corroded area’s extent.Then,a magnetic characteristic parameter W based on a large amount of experimental data was established to characterize the degree of corrosion of the steel bars.The magnetic characteristic parameter W is linearly related to the maximum cross-sectional area loss rateof the corroded reinforcement.This paper will lay the foundation for future research on corrosion detection of reinforced concrete structures based on the MMM method and provide a feasible way for non-destructive detection of corrosion independent of the influence of reinforcement diameter and magnetization history. 展开更多
关键词 reinforcing steel metal magnetic memory(MMM)method spontaneous magnetic flux leakage(SMFL) nondestructive testing local corrosion
下载PDF
Corrosion Behavior of Reinforcement Steel Embedded in Cement Mortars Using Different Protection Systems 被引量:1
7
作者 Evgenia Voulgari Aggeliki Zacharopoulou +1 位作者 Nikolaos Chousidis George Batis 《Materials Sciences and Applications》 2019年第6期461-474,共14页
Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines f... Although reinforced concrete structures are able to withstand towards a variety of adverse environmental conditions, reinforcement corrosion could lead to concrete structure deterioration. The present study examines four different ways of using corrosion inhibitors against pitting corrosion. In particular, it was investigated the chloride penetration resistance of reinforced cement mortars using corrosion inhibitor applied in three different ways. The corrosion behavior of the specimens was evaluated by electrochemical methods such as Linear Polarization Resistance and Halfcell Potential Resistance. In addition, the mass loss of steel rebars against time of partially immersion in sodium chloride (NaCl) solution was carried out in the lab. The experimental results showed that the corrosion systems examined in the study provide anticorrosion protection on steel rebars against chlorides comparing with the reference group. 展开更多
关键词 Cement MORTARS reinforcement steel PITTING CORROSION CORROSION Inhibitors Chloride Ions Electrochemical Measurements Mass Loss
下载PDF
Mechanical properties of steel mesh in anchor-mesh support for rocky tunnels
8
作者 SUN Keguo JIA Jinglong +4 位作者 XU Weiping ZHANG Yu WANG Jinjin WANG Yichao LIU Yongkui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3487-3502,共16页
Underground geotechnical engineering encounters persistent challenges in ensuring the stability and safety of surrounding rock structures, particularly within rocky tunnels. Rock reinforcement techniques, including th... Underground geotechnical engineering encounters persistent challenges in ensuring the stability and safety of surrounding rock structures, particularly within rocky tunnels. Rock reinforcement techniques, including the use of steel mesh, are critical to achieving this goal. However, there exists a knowledge gap regarding the comprehensive understanding of the mechanical behavior and failure mechanisms exhibited by steel mesh under diverse loading conditions. This study thoroughly explored the steel mesh's performance throughout the entire loading-failure process, innovating with detailed analysis and modeling techniques. By integrating advanced numerical modeling with laboratory experiments, the study examines the influence of varying reinforcement levels and geometric parameters on the steel mesh strength and deformation characteristics. Sensitivity analysis, employing gray correlation theory, identifies the key factors affecting the mesh performance, while a BP (Backpropagation) neural network model predicts maximum vertical deformation with high accuracy. The findings underscore the critical role of steel diameter and mesh spacing in optimizing peak load capacity, displacement, and energy absorption, offering practical guidelines for design improvements. The use of a Bayesian Regularization (BR) algorithm further enhances the predictive accuracy compared to traditional methods. This research provides new insights into optimizing steel mesh design for underground applications, offering an innovative approach to enhancing structural safety in geotechnical projects. 展开更多
关键词 TUNNEL steel mesh BP neural network Anchor-mesh support Rock reinforcement technique
下载PDF
Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
9
作者 Yong Wan Li Li +4 位作者 Jiaxin Zou Hucheng Xiao Mengdi Zhu Ying Su Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1941-1956,共16页
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ... Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively. 展开更多
关键词 Ultra-high performance concrete chemical shrinkage reducing agent steel fiber shrinkage cracking repair and reinforcement
下载PDF
Experimental study on box shape steel reinforced concrete beam 被引量:3
10
作者 杨春 蔡健 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期463-468,共6页
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ... Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application. 展开更多
关键词 steel reinforced concrete (SRC) experimental study ultimate strength box shape steel
下载PDF
Seismic strengthening of reinforced concrete columns damaged by rebar corrosion using combined CFRP and steel jacket 被引量:2
11
作者 李金波 贡金鑫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期506-512,共7页
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve... In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed. 展开更多
关键词 reinforced concrete column seismic performance CORROSION retrofitting steel jacket fiber-reinforced polymer (FRP) DUCTILITY
下载PDF
基于Reinforcing Steel本构的高强钢筋混凝土柱纤维模型研究 被引量:1
12
作者 高立 左工 《世界地震工程》 CSCD 北大核心 2021年第3期129-137,共9页
为了研究HTRB630E级高强钢筋的基本力学参数和疲劳性能,本文进行了应变等幅低周疲劳性能试验,并将试验结果与HRB400级钢筋的结果进行了对比分析。首先,基于应变等幅低周疲劳试验数据点,对OpenSees程序中Reinforcing Steel材料本构的疲... 为了研究HTRB630E级高强钢筋的基本力学参数和疲劳性能,本文进行了应变等幅低周疲劳性能试验,并将试验结果与HRB400级钢筋的结果进行了对比分析。首先,基于应变等幅低周疲劳试验数据点,对OpenSees程序中Reinforcing Steel材料本构的疲劳参数C f、C d和α进行拟合,然后采用拟合的Reinforcing Steel材料本构疲劳三参数,基于OpenSees软件对钢筋混凝土柱有限元纤维模型进行数值模拟,最后将数值结果与试验柱结果对比分析。结果表明:拟合的疲劳三参数对有限元纤维模型有优化效果,为配置HTRB630E级高强钢筋混凝土结构数值纤维模型提供参考。 展开更多
关键词 HTRB630E级高强钢筋 低周疲劳 OPENSEES reinforcing steel
下载PDF
Probabilistic Lifetime Assessment of Marine Reinforced Concrete with Steel Corrosion and Cover Cracking 被引量:10
13
作者 陆春华 金伟良 刘荣桂 《China Ocean Engineering》 SCIE EI 2011年第2期305-318,共14页
In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be character... In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion. 展开更多
关键词 marine reinforced concrete chloride ingress steel corrosion cover cracking probabilistic lifetime
下载PDF
CO_(2) corrosion of X80 steel welded joints under micro-turbulence induced by welding reinforcement height
14
作者 Xiao-hui Dou Bin Li +3 位作者 Zong-hao He Xin-wei Zhang Da-lei Zhang Yan Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期1015-1032,共18页
Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation.The welding reinforcement height(WRH)can induce locally micro-turbulent flow field,which aggravates local... Corrosion failure accidents owing to flow erosion and pipeline corrosion frequently occur during transportation.The welding reinforcement height(WRH)can induce locally micro-turbulent flow field,which aggravates local corrosion of welded joints.A high wall shear stress(WsS)experimental setup was established to conduct the online electrochemical corrosion test.The influence of WRH sizes on local corrosion of welded joints was studied at different flow rates.The electrochemical signals of the local corrosion of X80 welded joints at different flow rates were monitored in real time using electrochemical impedance spectroscopy and wire beam microelectrode.In addition,the corrosion products composition and properties were analyzed.The results show that the micro-turbulent flow fields induced by the WRHs can enhance ion mass transfer near the welded joints.The corrosion products on the WRH surface also present different microscopic morphologies at different flow rates.In strong flow fields,the locally enhanced wsS can peel off the dense corrosion product partially,leading to the electrochemical distribution of large cathode and small anode,which accelerates the occurrence and development processes of the local corrosion of welded joints.The scientific guidelines for the corrosion protection of long-distance oil and gas pipelines can be potentially provided. 展开更多
关键词 X80 steel welded joint Welding reinforcement height Micro-turbulence CO_(2)corrosion-Ion mass transfer
原文传递
Punching shear behavior of steel fiber reinforced recycled coarse aggregate concrete two-way slab without shear reinforcement
15
作者 Yongming YAN Danying GAO Feifei LUO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第10期1556-1575,共20页
In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.... In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.The effects of RCA replacement ratio(rg)and SF volume fraction(Vf)on the punching shear performance of SFRCAC two-way slabs were investigated.Digital Image Correlation(DIC)measurement and Acoustic Emission(AE)technique were introduced to collect pictures and relevant data during the punching shear test.The test results show that the SFRCAC two-way slab mainly exhibits punching shear failure and flexure failure under local concentric load.The punching shear failure space area of SFRCAC two-way slab has no obvious change with increasing rg,however,show a gradual increase trend with increasing Vf.Both of the punching shear ultimate bearing capacity(Pu)and its deflection of SFRCAC two-way slab decrease with increasing rg and increase with increasing Vf,respectively.Finally,through the regression analysis of the results from this study and the data collected from related literature,the influence of rg and Vf on the Pu of two-way slabs were obtained,and the equations in GB 50010-2010,ACI 318-19,and Eurocode 2 Codes were amended,respectively.Furthermore,the amended equations were all applicable to predicted the ultimate bearing capacity of the ordinary concrete two-way slab,RCAC two-way slab,SFRC two-way slab,and SFRCAC two-way slab. 展开更多
关键词 recycled coarse aggregate steel fiber reinforced recycled coarse aggregate concrete two-way slab punching shear punching shear ultimate bearing capacity
原文传递
Mechanical Properties of Layered Steel Fiber and Hybrid Fiber Reinforced Concrete 被引量:5
16
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期733-736,共4页
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com... To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C. 展开更多
关键词 layered steel fiber reinforced concrete mechanical properties layer hybrid fiber reinforced concrete
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:4
17
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING steel STRIP Seismic behaviors 1-g SHAKING table test
下载PDF
Hysteretic behavior of special shaped columns composed of steel and reinforced concrete(SRC) 被引量:18
18
作者 Chen Zongping Xu Jinjun Xue Jianyang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第2期329-345,共17页
This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine... This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit. 展开更多
关键词 steel reinforced concrete special-shaped(SRCSS) co
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
19
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Effect of Acid Rain Erosion on Steel Fiber Reinforced Concrete 被引量:3
20
作者 王艳 牛荻涛 SONG Zhanping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期121-128,共8页
Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.... Acid rain can deteriorate the performance of reinforced concrete structure.Combined with the characteristics of acid rain in China,the properties of steel fiber reinforced concrete subjected to acid rain were studied.The effects of steel fiber content and pH value of acid rain on the mass loss,erosion depth,neutralization depth,and splitting tensile strength of tested concrete were investigated.The mercury intrusion pore(MIP) test was used to analyze the influence of steel fiber on the acid rain resistance of concrete matrix.The results show that the corrosion of steel fiber reinforced concrete subjected to acid rain results from the combined effect of H^+ and SO4^2- in the acid rain,and steel fiber can improve the acid rain resistance of the tested concrete by improving the pore structure and enhancing the tie effect of the concrete matrix.The experiment further indicates that the optimum content of steel fiber is 1.5%compared to the various mixing proportion in this tests.The tested concrete mass loss and splitting tensile strength decrease followed by increasing as a function of corrosion time when the pH value of the simulation solution is 3 or 4,while they decrease continuously in the simulation solution at pH 2.Thanks to the tie effect of steel fiber,the spalling of concrete matrix is significantly improved,and the erosion depth and neutralization depth are less than those of conventional concrete. 展开更多
关键词 steel fiber reinforced concrete acid rain neutralization depth erosion depth
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部