Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffn...To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.展开更多
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method...An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.展开更多
Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish...Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.展开更多
This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperatur...This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data ...In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.展开更多
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ...Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.展开更多
This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial ...This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.展开更多
On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the str...On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the structure design and degradation of the shock absorber is discussed in the paper. From dynamic property, analysed the dynamic cause for degradation, the paper proposes a technical method of improving outer performance and a concept of critical velocity, and discusses what effects the critical velocity and the outer performance mance degradation has.展开更多
The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><...The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">response correlation is a great concern for the management and maintenance agency of bridges. Based on both the load test data and the long-term structural health monitoring data, this study aims to characterize the variation in the girder-end longitudinal displacement of a long-span suspension bridge, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, the Zhaoyun Bridge in Guangdong Province of China. The load test provides a valuable chance to investigate the structural deformation in high loading levels, while the structural health monitoring system records the real-time, in-site, and long-term measurements in the normal operational stage of bridges. During the load test, the movement direction of the main girder is found to depend on the relative position of the center of gravity of the girder and the loading vehicles. However, over the period of normal operation, the quasi-static displacement at the ends of the main girder along the bridge axis is dominated by the temperature variations, rather than the traffic loading. The temperature-induced deformation is considerable so it should be filtered out from the structural total responses to highlight the live load effects or the anomalies of the bridge. As a case study, the temperature-displacement baseline model of the Zhaoyun Bridge is established and then utilized to identify the erroneous measurements in the structural health monitoring system. This paper serves as a reference for the structural behavior interpretation and performance evaluation of similar bridges.展开更多
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
This paper is concerned with the earthquake analysis of suspension bridges, in which the effects of large deflections are taken into account. The first part of the study deals with an iteration scheme for the nonlinea...This paper is concerned with the earthquake analysis of suspension bridges, in which the effects of large deflections are taken into account. The first part of the study deals with an iteration scheme for the nonlinear static analysis of suspension bridges by means of tangent stiffness matrices. The concept of tangent stiffness matrix is then introduced in the frequency equation governing the free vibration of the system. At any equilibrium stage, the vibrations are assumed to take place tangent to the curve representing the force-deflection characteristics of the structure. The bridge is idealized as a three dimensional lumped mass system and subjected to three orthogonal components of earthquake ground motion producing horizontal, vertical and torsional oscillations. By this means a realistic appraisal is achieved for torsional response as well as for the other types of vibration. The modal response spectrum technique is applied to evaluate the seismic loading for the combination of these vibrations. Various numerical examples are introduced in order to demonstrate the method of analysis. The procedure described enables the designer to evaluate the nonlinear dynamic response of suspension bridges in a systematic manner.展开更多
The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urge...The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.展开更多
The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and a...The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.展开更多
The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the ...The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material.展开更多
The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system ...The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system features of super-long and high flexibility was made. Meanwhile, the FEM results were compared with those of the single span suspension structure. Three-stage analytic hierarchy process (AHP) is developed to analyze the mechanical response including whole bridge analysis, partial beams section analysis and orthotropic plate analysis. The most unfavorable load position was determined by the numerical solutions acquired from each stage to study the main mechanical index of multiple span suspension structure. The FEM results showed that the mechanical response numerical solutions by using the three-stage AHP are greater than those by simplified boundary condition, and the force condition of multiple span suspension structure is worse than that of the single span suspension structure.展开更多
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金The National Natural Science Foundation of China(No.11902207,No.52072072)the Natural Science Foundation of Hebei Province(A2020210018)Higher Education Teaching Research Project(No.Y2020-15).
文摘To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA04Z416)
文摘An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA04Z416)the National Science Fund for Distinguished Young Scholars(No.50725828)
文摘Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.
基金National Natural Science Foundation of China Under Grant No.50725828 & No.50808041PhD Programs Foundation of Ministry of Education of China Under Grant No. 200802861011Scientific Research Foundation of Graduate School of Southeast University Under Grant No.YBJJ0923
文摘This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金The National Natural Science Foundation of China (No.90815022, 50808160)
文摘In order to provide a reliable basis for wind resistant evaluation of a long-span suspension bridge, a structural health monitoring system is installed on a bridge in the East China Sea and the simultaneous wind data at the bridge deck and at the top of the bridge tower are recorded. The average wind speeds and directions, variations of wind speeds with height, turbulent characteristics, spatial correlation and characteristics of wind flow around the bridge deck are analyzed by using statistical methods and spectral analysis. It is found that the average wind speeds along the bridge girder are almost identical; however, the mean wind directions vary greatly at different locations. The dimensionless exponent decreases as the average wind speed increases. The measured turbulence intensities are greater than the recommended values, and the turbulence power spectrum can well fit the standard spectrum. However, the measured spectral values are considerably smaller in low frequency ranges. The mean wind speed of the wake flow decreases and the turbulence intensity increases significantly, and the spectral characteristics of the wake flow change obviously while the feature frequency of vortex shedding has not yet been observed.
文摘Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.
基金The National Natural Science Foundation of China(No.50725828,50808041)the Natural Science Foundation of Jiangsu Province(No.BK2008312)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861011)
文摘This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.
文摘On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the structure design and degradation of the shock absorber is discussed in the paper. From dynamic property, analysed the dynamic cause for degradation, the paper proposes a technical method of improving outer performance and a concept of critical velocity, and discusses what effects the critical velocity and the outer performance mance degradation has.
文摘The load</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">response correlation is a great concern for the management and maintenance agency of bridges. Based on both the load test data and the long-term structural health monitoring data, this study aims to characterize the variation in the girder-end longitudinal displacement of a long-span suspension bridge, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, the Zhaoyun Bridge in Guangdong Province of China. The load test provides a valuable chance to investigate the structural deformation in high loading levels, while the structural health monitoring system records the real-time, in-site, and long-term measurements in the normal operational stage of bridges. During the load test, the movement direction of the main girder is found to depend on the relative position of the center of gravity of the girder and the loading vehicles. However, over the period of normal operation, the quasi-static displacement at the ends of the main girder along the bridge axis is dominated by the temperature variations, rather than the traffic loading. The temperature-induced deformation is considerable so it should be filtered out from the structural total responses to highlight the live load effects or the anomalies of the bridge. As a case study, the temperature-displacement baseline model of the Zhaoyun Bridge is established and then utilized to identify the erroneous measurements in the structural health monitoring system. This paper serves as a reference for the structural behavior interpretation and performance evaluation of similar bridges.
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.
文摘This paper is concerned with the earthquake analysis of suspension bridges, in which the effects of large deflections are taken into account. The first part of the study deals with an iteration scheme for the nonlinear static analysis of suspension bridges by means of tangent stiffness matrices. The concept of tangent stiffness matrix is then introduced in the frequency equation governing the free vibration of the system. At any equilibrium stage, the vibrations are assumed to take place tangent to the curve representing the force-deflection characteristics of the structure. The bridge is idealized as a three dimensional lumped mass system and subjected to three orthogonal components of earthquake ground motion producing horizontal, vertical and torsional oscillations. By this means a realistic appraisal is achieved for torsional response as well as for the other types of vibration. The modal response spectrum technique is applied to evaluate the seismic loading for the combination of these vibrations. Various numerical examples are introduced in order to demonstrate the method of analysis. The procedure described enables the designer to evaluate the nonlinear dynamic response of suspension bridges in a systematic manner.
基金supported by the National Natural Science Foundation of China (51975341,51875326,and 51905319)Shandong Provincial Natural Science Foundation,China (ZR2021QE180)+1 种基金the Young Technology Talent Supporting Project of Shandong Province (2021KJ083)SDUT&Zhangdian District Integration Development Project (2021JSCG0015).
文摘The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.
文摘The suspension coil spring is one of the most important components in a vehicle suspension system. Its primary function is to absorb the vibrational shocks that are occasioned by irregular road surface to provide the vehicle with stability and ride comfort. The main objective of this study is to design a suspension coil spring made of structural steel for light duty vehicles with the aim of weight and cost reduction. This study was motivated by the government of Ghana’s actions to industrialise the automotive sector of the country through government policies and programs. The study made use of high carbon steel and low carbon steel as the control materials and structural steel as the implementing material. This was done to determine the suitability of structural steel for vehicle suspension coil spring. The study analysed parameters such as total deformation, equivalent Von Mises stress, maximum shear stress, and safety factor in the static structural analysis. The fatigue analysis also analysed parameters such as fatigue life and fatigue alternating stress. The results of the study revealed that the suspension spring made of structural steel has superior properties against all the parameters set for this study apart from deformation. The two control materials that are known for suspension coil spring design and manufacture have better properties to withstand deformation than the implementing material.
基金National Science and Technology Support Program of China ( No. 2009BAG15B03)
文摘The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system features of super-long and high flexibility was made. Meanwhile, the FEM results were compared with those of the single span suspension structure. Three-stage analytic hierarchy process (AHP) is developed to analyze the mechanical response including whole bridge analysis, partial beams section analysis and orthotropic plate analysis. The most unfavorable load position was determined by the numerical solutions acquired from each stage to study the main mechanical index of multiple span suspension structure. The FEM results showed that the mechanical response numerical solutions by using the three-stage AHP are greater than those by simplified boundary condition, and the force condition of multiple span suspension structure is worse than that of the single span suspension structure.