Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve th...Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.展开更多
基金This work is supported by the National Natural Science Foundation of China(62072465)the Key-Area Research and Development Program of Guang Dong Province(2019B010107001).
文摘Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.