为遴选可有效表征农田土壤Cd生物有效性的指标,文章采集浙江某地20组稻米及其协同土壤,分析稻米Cd质量比、土壤的基本理化性质、Cd总质量比、不同浸提态Cd质量比及欧共体标准物质局(European Community Bureau of Reference,BCR)形态。...为遴选可有效表征农田土壤Cd生物有效性的指标,文章采集浙江某地20组稻米及其协同土壤,分析稻米Cd质量比、土壤的基本理化性质、Cd总质量比、不同浸提态Cd质量比及欧共体标准物质局(European Community Bureau of Reference,BCR)形态。结果表明:稻米Cd质量比为0.01~0.51 mg/kg,土壤Cd质量比为0.17~3.15 mg/kg,稻米Cd富集系数为0.04~1.42;土壤Cd主要以弱酸态(40.5%)和还原态(37.1%)存在,二乙烯三胺五乙酸(diethylenetriaminepentaacetic acid,DTPA)浸提土壤Cd能力最强(15.6%);基于w(CaCl_(2)-Cd)构建的三次函数建立的回归模型可解释稻米Cd 57.4%方差,w(CaCl_(2)-Cd)可以作为表征水稻土壤Cd生物有效性的指标,基于水稻土壤Cd生物有效性可提高污染风险评价的科学性。展开更多
The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoel...The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoelectrode core-shell CdSNR array with conductive polymers nanocomposite of polyaniline (PANI) and poly(3,4-ethylenedioxyl-thiophene)/poly(styrene-sulfonate) (PEDOT:PSS) were fabricated and designed with different types of dye molecules. DSSCs were characterized utilizing scanning electron microscopy (SEM), Raman scattering, energy dispersive spectroscopy (EDS), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and photocurrent-voltage (J-V) characteristic. Results show that under illumination (AM 1.5 G), the high power conversion energy (PCE) was achieved for CdSNR/PANI-PEDOT:PSS device when it sensitized with ruthenium (II) (dye N-719) of 0.91% and a short circuit current density (Jsc) of 4.21 mA/cm2 in comparison with the other devices, which sensitized with natural dyes. The high performance of the CdSNR/PANI-PEDOT:PSS-N719 device attributed to the wide range of absorption and photostability for N719. This work shows that the CdSNR with N719 can be appropriate candidate for photovoltaics device for their low cost fabrication procedure and excellent absorption.展开更多
Nanocomposite of CdIn2S4 was synthesized by direct feeding microwave synthesis method, using indium nitrate, cadmium nitrate and thioacetamide as raw material, cetyltrimethyl ammonium bromide(CTAB) as surfactant. The ...Nanocomposite of CdIn2S4 was synthesized by direct feeding microwave synthesis method, using indium nitrate, cadmium nitrate and thioacetamide as raw material, cetyltrimethyl ammonium bromide(CTAB) as surfactant. The crystal structure, morphology and the optical property of as-prepared sample were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and Fluorescence spectra. The results showed that the as-prepared nanocomposite is hexagonal CdIn2S4. The SEM showed that the shape of these nanoparticles is irregular and looks like flake/sphere with some aggregation. The size of most of the aggregate is 100 to 300 nm. The photocatalytic activity of the as-prepared samples was studied by using degradation of methylene bule under visible light. The results show that the photocatalytic activity of CaIn2S4 photocatalyst was very well. When the catalyst was 1.0 g/L, C(H2O2) was 3 mL/L, after 120 min of the irradiation, the degradation rate of CdIn2S4 for methylene blue of 20 mg/L reached 86.06%.展开更多
文摘为遴选可有效表征农田土壤Cd生物有效性的指标,文章采集浙江某地20组稻米及其协同土壤,分析稻米Cd质量比、土壤的基本理化性质、Cd总质量比、不同浸提态Cd质量比及欧共体标准物质局(European Community Bureau of Reference,BCR)形态。结果表明:稻米Cd质量比为0.01~0.51 mg/kg,土壤Cd质量比为0.17~3.15 mg/kg,稻米Cd富集系数为0.04~1.42;土壤Cd主要以弱酸态(40.5%)和还原态(37.1%)存在,二乙烯三胺五乙酸(diethylenetriaminepentaacetic acid,DTPA)浸提土壤Cd能力最强(15.6%);基于w(CaCl_(2)-Cd)构建的三次函数建立的回归模型可解释稻米Cd 57.4%方差,w(CaCl_(2)-Cd)可以作为表征水稻土壤Cd生物有效性的指标,基于水稻土壤Cd生物有效性可提高污染风险评价的科学性。
文摘The aligned hexagonal cadmium sulfide nanorods (CdSNR) have been synthe-sized by hydrothermal technique at 200ºC on fluorine tin oxide (FTO) sub-strates. Dye sensitized solar cells (DSSCs) based on the photoelectrode core-shell CdSNR array with conductive polymers nanocomposite of polyaniline (PANI) and poly(3,4-ethylenedioxyl-thiophene)/poly(styrene-sulfonate) (PEDOT:PSS) were fabricated and designed with different types of dye molecules. DSSCs were characterized utilizing scanning electron microscopy (SEM), Raman scattering, energy dispersive spectroscopy (EDS), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and photocurrent-voltage (J-V) characteristic. Results show that under illumination (AM 1.5 G), the high power conversion energy (PCE) was achieved for CdSNR/PANI-PEDOT:PSS device when it sensitized with ruthenium (II) (dye N-719) of 0.91% and a short circuit current density (Jsc) of 4.21 mA/cm2 in comparison with the other devices, which sensitized with natural dyes. The high performance of the CdSNR/PANI-PEDOT:PSS-N719 device attributed to the wide range of absorption and photostability for N719. This work shows that the CdSNR with N719 can be appropriate candidate for photovoltaics device for their low cost fabrication procedure and excellent absorption.
文摘Nanocomposite of CdIn2S4 was synthesized by direct feeding microwave synthesis method, using indium nitrate, cadmium nitrate and thioacetamide as raw material, cetyltrimethyl ammonium bromide(CTAB) as surfactant. The crystal structure, morphology and the optical property of as-prepared sample were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and Fluorescence spectra. The results showed that the as-prepared nanocomposite is hexagonal CdIn2S4. The SEM showed that the shape of these nanoparticles is irregular and looks like flake/sphere with some aggregation. The size of most of the aggregate is 100 to 300 nm. The photocatalytic activity of the as-prepared samples was studied by using degradation of methylene bule under visible light. The results show that the photocatalytic activity of CaIn2S4 photocatalyst was very well. When the catalyst was 1.0 g/L, C(H2O2) was 3 mL/L, after 120 min of the irradiation, the degradation rate of CdIn2S4 for methylene blue of 20 mg/L reached 86.06%.