期刊文献+
共找到6,617篇文章
< 1 2 250 >
每页显示 20 50 100
Temporal-spatial distribution and variability of cadmium contamination in soils in Shenyang Zhangshi irrigation area,China 被引量:8
1
作者 SUN Li-na ZHANG Yao-hua +3 位作者 SUN Tie-heng GONG Zong-qiang LIN Xin LI Hai-bo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1241-1246,共6页
Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochem... Heavy metal contamination in soils has been of wide concern in China in the last several decades. The heavy metal contamination was caused by sewage irrigation, mining and inappropriate utilization of various agrochemicals and pesticides and so on. The Shenyang Zhangshi irrigation area (SZIA) in China is a representative area of heavy metal contamination of soils resulting from sewage irrigation for about 30 years duration. This study investigated the spatial distribution and temporal variation of soil cadmium contamination in the SZIA. The soil samples were collected from the SZIA in 1990 and 2004; Cd of soils was analyzed and then the spatial distribution and temporal variation of Cd in soils was modelled using kriging methods. The kriging map showed that long-term sewage irrigation had caused serious Cd contamination in topsoil and subsoil. In 2004, the Cd mean concentrations were 1.698 and 0.741 mg/kg, and the maxima 10.150 and 7.567 mg/kg in topsoils (0-20 cm) and subsoils (20-40 cm) respectively. These values are markedly more than the Cd levels in the second grade soil standard in China. In 1990, the Cd means were 1.023 and 0.331 mg/kg, and the maxima 9.400 and 3.156 mg/kg, in topsoils and subsoils respectively. The soil area in 1990 with Cd more than 1.5 mg/kg was 2701 and 206.4 hnl2 in topsoils and subsoils respectively; and in 2004, it was 7592 and 1583 hm^2, respectively. Compared with that in 1990, the mean and maximum concentration of Cd, as well as the soil area with Cd more than 1.5 mg/kg had all increased in 2004, both in topsoils and subsoils. 展开更多
关键词 temporal-spatial distribution cadmium contamination of soil Zhangshi sewage irrigation area (ZSIA) Shenyang
下载PDF
Effects of contamination of single and combined cadmium and mercury on the soil microbial community structural diversity and functional diversity 被引量:9
2
作者 XIE Xiaomei LIAO Min +1 位作者 MA Aili ZHANG Haijun 《Chinese Journal Of Geochemistry》 EI CAS 2011年第3期366-374,共9页
To assess the effects of single and combined pollution of cadmium (Cd) and mercury (Hg) on soil micro-bial community structural and functional diversities, an incubation experiment was conducted, by employing two soil... To assess the effects of single and combined pollution of cadmium (Cd) and mercury (Hg) on soil micro-bial community structural and functional diversities, an incubation experiment was conducted, by employing two soils, namely, the marine sediment silty loam soil and the yellowish-red soil, in which five levels of Cd, Hg and Cd and Hg in combination were added. After being incubated for 56 days, the phospholipid fatty acids (PLFAs) profile and sole carbon source utilization pattern (BIOLOG) of the samples were tested. The results showed that the compo-sition of the microbial communities changed significantly at different levels of metals application. The principal component analyses (PCA) of PLFAs indicated that the structure of the microbial community was also significantly altered with increasing levels of metals, with increasing PLFAs biomarkers for fungi and actinomycetes, and in-creasing ratio of Gram-positive to Gram-negative bacteria. Sole carbon source utilization pattern analysis revealed that single and combined application of Cd and Hg inhibited significantly the functional activity of soil microorgan-isms, the functional diversity indices [Richness (S), Shannon-Wiener indices (H) and Evenness (EH)] were signifi-cantly lower in polluted soils than those in non-polluted soils, which also significantly altered with increasing levels of metals. PCA for the sole carbon source utilization pattern also indicated that the metal contamination could result in a variable soil microbial community. The results revealed that the combination of Cd and Hg had higher toxicity to soil microbial community structural and functional diversities than the individual application of Cd or Hg. 展开更多
关键词 微生物群落结构 镉(CD) 功能多样性 污染土壤 重金属污染 土壤微生物群落 多样性指数
下载PDF
Influence of Dark Brown Soil Respiration and Microbial Community under Cadmium Stress 被引量:2
3
作者 陆文龙 卓孔友 贾丹 《Agricultural Science & Technology》 CAS 2014年第12期2135-2137,共3页
Through laboratory simulation, the influence of cadmium on soil respiratory intensity and microbial community were studied by adding different concentrations of heavy metal cadmium. The results indicated that, the soi... Through laboratory simulation, the influence of cadmium on soil respiratory intensity and microbial community were studied by adding different concentrations of heavy metal cadmium. The results indicated that, the soil respiration had a signifi- cant weakening trend in the same culture days with increasing exogenous cadmium content; the soil respiration intensity was decreased obviously with the increase of culture time, especially after 14 d when the soil exogenous cadmium content was in the range of 0.5-3.0 mg/kg, while the soil respiration had not obvious variation over time when the exogenous cadmium content was in the range of 5.0-10.0 mg/kg. The soil microbial communities decreased significantly and were much lower than that of the control treatment in the same culture days with the increasing of soil exogenous cadmium content; the soil microbial community declined significantly with increasing of culture time for all exogenous cadmium treatments. The number of soil microbial communities in treatment with 10 mg/kg of exogenous cadmium were only 46.43%, 32.26%, 28.74%, 27.39% and 24.62% of that in control treatment on the 7th, 14th, 21st, 28th and 42rd of culture, respectively. It indicated that higher concen- tration of cadmium in dark brown soil had a significant inhibitory effect on soil mi- crobial growth. 展开更多
关键词 Dark brown soil cadmium soil breath Microbial community
下载PDF
Adsorption and Desorption Characteristics of Cadmium and Lead in Typical Paddy Soils of Jiangxi Province and Its Environmental Risk Assessment 被引量:1
4
作者 常娟 白玲 +1 位作者 冷婧 汪小强 《Agricultural Science & Technology》 CAS 2016年第7期1621-1626,共6页
[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were ... [Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils. 展开更多
关键词 Paddy soil cadmium and lead Competitive adsorption and desorption Environmental risk assessment
下载PDF
Effect of amendments on growth and metal uptake of giant reed(Arundo donax L.) grown on soil contaminated by arsenic,cadmium and lead 被引量:6
5
作者 杨淼 肖细元 +2 位作者 苗旭峰 郭朝晖 王凤永 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1462-1469,共8页
The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown o... The effects of five amendments such as acetic acid(AA), citric acid (CA), ethylenediamine tetraacetic acid (EDTA), sepiolite and phosphogypsum on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic (As), cadmium (Cd) and lead (Pb) were studied. The results showed that the shoot biomass of giant reed was enhanced by 24.8% and 15.0%, while superoxide mutase and catalase activities slightly varied when adding 5.0 mmol/kg CA and 2.5 mol/kg EDTA to soil as compared to the control, respectively. The concentrations of As, Cd and Pb in shoots were remarkably increased by the addition of 2.5 mmol/kg AA and CA, 5.0 mmol/kg EDTA, and 4.0 g/kg sepiolite as compared to the control. The accumulations of As and Cd were also significantly enhanced in the above condition, while the shoot Pb accumulation was noticeably enhanced by amending with 4.0 g/kg sepiolite and 8.0 g/kg phosphogysum, respectively. The results suggested that AA, CA and sepiolite could be used as optimum soil amendments for giant reed remediation system. 展开更多
关键词 PHYTOREMEDIATION giant reed soil amendments heavy metal contaminated soil metal uptake
下载PDF
Cadmium Release in Contaminated Soils due to Organic Acids 被引量:21
6
作者 LIAOMin XIEXiao-Mei 《Pedosphere》 SCIE CAS CSCD 2004年第2期223-228,共6页
There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s... There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions. 展开更多
关键词 artificially contaminated soil cadmium organic acid polluted soil RELEASE
下载PDF
Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate 被引量:21
7
作者 ZHAO Xiu-lan Saigusa Masaihiko 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期343-347,共5页
Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in... Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS. 展开更多
关键词 porous hydrated calcium silicate SOLUBILITY soil cadmium
下载PDF
Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution 被引量:11
8
作者 Muhammad Akmal WANG Hai-zhen +2 位作者 WU Jian-jun XU Jian-ming XU De-fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期802-807,共6页
Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity,... Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control. 展开更多
关键词 enzyme activity microbial community soil cadmium
下载PDF
Effects of Cadmium, Lead, and Zinc on Size of MicrobialBiomass in Red Soil 被引量:40
9
作者 K.S.KHAN XIEZHENGMIAO 《Pedosphere》 SCIE CAS CSCD 1998年第1期27-32,共6页
A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five d... A laboratory incubation experiment was conducted to study the influence of cadmium (Cd), lead (Pb)and zinc (Zn) on the size of the microbial biomass in red soil. All the three metals were applied, separately,at five different levels that were: Cd at 5, 15, 30, 60 and 100 μg g-1; Pb at 100, 200, 300, 450 and 600 μg g-1 and Zn at 50, 100, 150, 200 and 250 μg g-1 soil. In comparison to uncontaminated soil, the microbial biomass carbon and biomass nitrogen decreased sharply in soils contaminated with Cd, Ph and Zn. A more considerable increase in the microbial biomass C: N ratio was observed in the metal contaminated soils than the non-treated control. Among the tested metals, Cd displayed the greatest biocidal effect followed by Zn and Pb, showing their relative toxicity in the order of Cd > Zn > Pb. 展开更多
关键词 cadmium LEAD microbial biomass red soil ZINC
下载PDF
Soil Cadmium Regulates Antioxidases in Sorghum 被引量:9
10
作者 LIU Da-lin ZHANG Shu-pan CHEN Zheng QIU Wei-wei 《Agricultural Sciences in China》 CAS CSCD 2010年第10期1475-1480,共6页
The regulatory mechanism of soil cadmium (Cd) on antioxidases in sorghum was studied using 3 sorghum species viz., sweet sorghum [Sorghum bicolor (L.)] Moench. cv. Hunnigreen, sorghum hybrid sudangrass (Sorghum b... The regulatory mechanism of soil cadmium (Cd) on antioxidases in sorghum was studied using 3 sorghum species viz., sweet sorghum [Sorghum bicolor (L.)] Moench. cv. Hunnigreen, sorghum hybrid sudangrass (Sorghum bicolor × S. sudanense, cv. Everlush) and sudangrass [Sorghum sudanense (Piper) Stapf cv. Xinjiang]. The results showed that low concentrations of Cd^2+ (410 mg kg-0 induced the activities of 4 antioxidases in leaves of the 3 species of sorghum, but high Cd^2+ concentrations (≥ 50 mg kg-0 significantly reduced the activities of all the four antioxidases. The glutathione (GSH) contents in leaves of the 3 species of sorghum correlated positively with the Cd^2+ concentrations. The maximum antioxidase activities were observed at the elongation stage of sorghum during the whole growth period. 展开更多
关键词 SORGHUM soil cadmium antioxidase
下载PDF
Adsorption of Cadmium by Soil Colloids and Minerals in Presence of Rhizobia 被引量:20
11
作者 HUANGQIAOYUN CHENWENLI 《Pedosphere》 SCIE CAS CSCD 2000年第4期299-307,共9页
Experiments were conducted to study the adsorption of Cd on two soil colloids (red soil and yellow- brown soil) and three variable-charge minerals (goethite, noncrystalline Fe oxide and kaolin) in the absence and pres... Experiments were conducted to study the adsorption of Cd on two soil colloids (red soil and yellow- brown soil) and three variable-charge minerals (goethite, noncrystalline Fe oxide and kaolin) in the absence and presence of rhizobia. The tested strain Rhizobium fredii C6, tolerant to 0.8 mmol L-1 Cd, was selected from 30 rhizobial strains. Results showed that the isotherms for the adsorption of Cd by examined soil colloids and minerals in the presence of rhizobia could be described by Langmuir equation. Within the range of the numbers of rhizobial cells studied, the amount of Cd adsorbed by each system increased with increasing rhizobial cells. Greater increases for the adsorption of Cd were found in red soil and kaolin systems. Rhizobia influence on the adsorption of Cd by examined soil colloids and minerals was different from that on the adsorption of Cu. The presence of rhizobia increased the adsorption sanity of soil colloids and minerals for Cd, particularly for the goethite and kaolin systems. The discrepancies in the influence of rhizobia on the adsorbability and affinity of selected soil colloids and minerals for Cd suggested the different interactions of rhizobia with various soil components. It is assumed that bacterial biomass plays an important role in controlling the mobility and bioavailability of Cd in soils with kaolinite and goethite as the major colloidal components, such as in variable-charge soil. 展开更多
关键词 cadmium adsorption iron oxide KAOLIN RHIZOBIA soil colloid
下载PDF
Cadmium in agricultural soils,vegetables and rice and potential health risk in vicinity of Dabaoshan Mine in Shaoguan,China 被引量:15
12
作者 王振兴 胡习邦 +4 位作者 许振成 蔡立梅 王俊能 曾东 洪鸿加 《Journal of Central South University》 SCIE EI CAS 2014年第5期2004-2010,共7页
Soil cadmium(Cd)contamination resulted from mining and smelting is a major environmental concern,and health risk associated with Cd exposure to multi-media through muti-pathway is increasing.Cd concentrations in soils... Soil cadmium(Cd)contamination resulted from mining and smelting is a major environmental concern,and health risk associated with Cd exposure to multi-media through muti-pathway is increasing.Cd concentrations in soils,vegetables and paddy rice were investigated,and potential non-carcinogenic and carcinogenic health risks exposure to Cd were estimated at six villages around the Dabaoshan Mine,South China.A total of 87 soil samples were found to exceed the China's maximum permission level(MPL)for Cd,while the highest value of 4.42 mg/kg was found near irrigation ditch associated with Hengshi River in Xinyi(XY)Village.Cd contents in vegetables and rice exceeded the maximum permissible concentration by more than five times in every village.Cadmium accumulation in plants is in the order of celery>lactuca sativa L>Chinese cabbage>Romaine lettuce>asparagus lettuce>mustard>cabbage mustard>cabbage.The mean hazard quotient(HQ)of all villages is in the range of [5.29,25.75],and the mean values of cancer risk for investigated areas are more than 10 times greater than the USEPA(2009)threshold limit value of 10-4.Moreover,human non-carcinogenic and carcinogenic risks are mainly attributable to paddy rice intake,followed by vegetables intake,soil ingestion,inhalation,and dermal contact.The results indicate that Cd has a huge potential risk on human health for the local residents. 展开更多
关键词 cadmium health risk soil pollution VEGETABLES paddy rice dietary intake
下载PDF
Effect of Sulfate on Adsorption of Zinc and Cadmium by Variable Charge Soils *1 被引量:13
13
作者 ZHANGGANGYA G.W.BRUMMER 《Pedosphere》 SCIE CAS CSCD 1998年第3期245-250,共6页
SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ ... SO 4 2- and Zn 2+ or Cd 2+ were added to three variable charge soils in different sequences. In one sequence sulfate was added first, and in the other, Zn 2+ or Cd 2+ first. The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added, with the effect more remarkable when the soil reacted with the sulfate prior to the metal. The shift in pH 50 for both Zn and Cd adsorption was also comparatively larger in the first sequence of reactions. It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd, and the formation of the ternary surface complex S SO 4 M might also play a role in the effect. 展开更多
关键词 ADSORPTION cadmium SULFATE variable charge soil zinc
下载PDF
Study on Electrokinetic Remediation of Cadmium-contaminated Soil 被引量:4
14
作者 Meng SHEN Yanqiu CHEN +4 位作者 Hui HAN Xin WEN Min SHAO Mingxin WANG Yushan WAN 《Agricultural Biotechnology》 CAS 2019年第1期135-139,共5页
In order to improve electrokinetic remediation efficiency of cadmium-contaminated soil,the effects of electric field intensity,remediation time and electrolyte on removal rate of total Cd in Cd-contaminated soil by el... In order to improve electrokinetic remediation efficiency of cadmium-contaminated soil,the effects of electric field intensity,remediation time and electrolyte on removal rate of total Cd in Cd-contaminated soil by electrokinetic remediation were studied through the preparation of Cd-contaminated soil and the construction of electrokinetic remediation equipment. The results showed that under the same condition,with the electric field intensity increasing from 2. 5 to 3 V/cm,the total Cd removal rate increased by 10. 62%,and with the increase of the electric field intensity from 3 to 3. 5 V/cm,the removal rate increased by 1. 87%;when the remediation time was prolonged from 72 to 96 h,the removal rate of total Cd increased by 6. 68%,and with the remediation time prolonged from 96 to120 h,the removal rate of total Cd increased by 8. 75%; and with the remediation time prolonged from 120 to 144 h,the removal rate of total Cd only increased by1. 07%. Compared with citric acid as the electrolyte,the acetic acid group improved the remediation efficiency by 12. 14% and the total energy consumption by62. 13%,while the hydrochloric acid group improved the remediation efficiency by 18. 04% and the total energy consumption by 187. 9%. Comprehensively from total Cd removal rate and energy consumption,the remediation effect was the best under the electric field intensity of 3 V/cm and the electrokinetic time of 120 h with acetic acid as the electrolyte,which achieved a total Cd removal rate of 41. 95%. 展开更多
关键词 ELECTROKINETIC REMEDIATION cadmium contamination ELECTROLYTE BENTONITE
下载PDF
SORPTION AND DESORPTION CHARACTERISTICS OF CADMIUM BY FOUR DIFFERENT SOILS IN NORTHEAST CHINA 被引量:6
15
作者 ZHANG Lei SONG Feng-bin 《Chinese Geographical Science》 SCIE CSCD 2005年第4期343-347,共5页
Four soils, phaeozem (PM), saline-alkali soil (SA), meadow albic bleached soil (MA) and dark brown forest soil (DB) from Northeast China were used to examine the sorption and desorption characteristics of Cd and pH in... Four soils, phaeozem (PM), saline-alkali soil (SA), meadow albic bleached soil (MA) and dark brown forest soil (DB) from Northeast China were used to examine the sorption and desorption characteristics of Cd and pH influence on it. According to sorption experiment without pH control, the order of amount of absorbed Cd by soils was: SA>PM>DB>MA. The results from non-linear fitting method showed that Langmuir and Freundrich models were more adaptable than Temkin model in describing the sorption data. The maximum sorption amounts from Langmuir model were: PM>SA>MA>DB. Exponential equation for PM and SA and quadratic equation for MA and DB were suitable to fit the desorption data. The order of average desorption percentage was: MA>DB>PM>SA. The amounts of sorption by PM, DB and MA reached the maximum in pH 9.0, while sorption by SA was linearly increased in the experimental range of pH 3.3-11.4. In uniform pH, however, Cd sorption by SA was the minimum among four soils, which indicated that the more amounts of Cd absorbed by SA in isotherm sorption were ascribed to the higher soil pH. The higher sorption of Cd in PM resulted from the higher percentage of organic matter and clay components. 展开更多
关键词 cadmium soil SORPTION DESORPTION Northeast China
下载PDF
Effects of Soil pH,Texture,Moisture,Organic Matter and Cadmium Contenton Cadmium Diffusion Coefficient 被引量:7
16
作者 WUQI-TANG J.L.MOREL 《Pedosphere》 SCIE CAS CSCD 1994年第2期97-103,共7页
The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements we... The supply of cadmium from soil to plant roots mainly depends on the diffusion process. This work was conducted tostudy the effect of some soil properties on cadmium diffusion coefficient (D) in soil. Measurements were made using the Shofield and Graham-Bryce's isotopic labelling method. Cadmium diffusion coefficients varied from 10 ̄(-7) to 10 ̄(-9) cm ̄2s ̄(-1),Higher values were observed in acid sandy soils and lower values in calcareous clay soils. Liming an acid soil resulted in a sub-stantial decrease of D. Addition of cadmium as nitrate salt generally increased D, while addition of sewage sludge and organ-ic matter resulted in a significant decrease of cadmium diffusion. The rhizospheric activity also induced a moderate reduction in D. The relationships between D 10 ̄(-9)cm ̄2s ̄(-1)) on the one hand and soil PH, moisture (Mc, g kg ̄(-1)), organic matter (OM, gkg ̄1 ), clay (Cy, g kg ̄(-1)) and cadmium content (Cd, mg kg ̄(-1)) on the other were obtained by the multigle regression:D=182. 1-29.g1 pH+0.210Mc-0.303OM+0.011Cy+1.64Cd (R ̄2=0.859,n=22 ). 展开更多
关键词 cadmium corn rhizosphere diffusion coefficient soil properties
下载PDF
Ecotoxicity of Cadmium to Maize and Soybean Seedling in Black Soil 被引量:4
17
作者 Cao Huicong Wang Jinda Zhang Xuelin 《Chinese Geographical Science》 SCIE CSCD 2007年第3期270-274,共5页
Ecotoxicity and bioavailability of cadmium (Cd) to the maize (Zea mays L.) and the soybean (Glycine max (L.) Merr.) were investigated by acute toxicity experiment in the laboratory with black soil. Ecotoxicity... Ecotoxicity and bioavailability of cadmium (Cd) to the maize (Zea mays L.) and the soybean (Glycine max (L.) Merr.) were investigated by acute toxicity experiment in the laboratory with black soil. Ecotoxicity and bioavailability of Cd were quantified by calculating the median effective concentration (ECs0) and bioaccumulation factor (BAF). The measurement endpoints used were seed germination and seedling growth (shoot and root). The results showed that concentrations of Cd in the soil had adverse effect on the growth of roots and shoots. Seed germination was not the sensitive indicator for the ecotoxicity of Cd in the soil, while the growth of roots was the most sensitive measurement endpoint. Absorbability and transport of Cd in plants depended on the test crop species and Cd concentrations in the soil. The maize retains more Cd in its roots, while the soybean transports more Cd to the shoots from roots. 展开更多
关键词 cadmium MAIZE SOYBEAN ECOTOXICITY black soil
下载PDF
Effect of Selected Organic Acids on Cadmium Sorption by Variable- and Permanent-Charge Soils 被引量:7
18
作者 HU Hong-Qing LIU Hua-Liang +1 位作者 HE Ji-Zheng HUANG Qiao-Yun 《Pedosphere》 SCIE CAS CSCD 2007年第1期117-123,共7页
Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latoso... Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L^-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-clnnamon soil and generally the yellow-brown soil (permanent-charge soils) decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the varlable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol. 展开更多
关键词 cadmium sorption organic acids variable- and permanent-charge soils
下载PDF
Effect of Anions on Toxicity of Cadmium Applied to Microbial Biomass in Red Soil 被引量:4
19
作者 K.S.KHAN XIEZHENGMIAO 《Pedosphere》 SCIE CAS CSCD 1997年第3期231-235,共5页
A laboratory incubation experiment was conducted to elucidate the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels, i.e., 0 ... A laboratory incubation experiment was conducted to elucidate the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels, i.e., 0 (background), 5, 15, 30, 60 and 100 μg-1 soil in the form of either cadmium acetate or cadmium chloride.Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chloride at all the tested levels. Similarly, organic carbon to biomass carbon ratio in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change was much smaller in the case of cadmium chloride at the same cadmium levels. The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levels in experiments. 展开更多
关键词 ANIONS cadmium toxicity microbial biomass red soil
下载PDF
Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time 被引量:4
20
作者 Jia-li SHENTU Zhen-li HE +1 位作者 Xiao-e YANG Ting-qiang LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期250-260,共11页
Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reac... Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reach a concentration range of 0-16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5-1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (〈0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (〈1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1-16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. 展开更多
关键词 cadmium (Cd) Microbial activity Microbial community soil
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部