Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanis...A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. Therefore, an experimental way was performed in order to make shear wave on the bottom of aluminum alloyed pyramid. Also, a jig was manufactured and developed for generating a shear wave based on the computer numerical simulation. It is found that the experimentally shear wave variation of newly-designed jig is consistent with computer numerical simulation results and shear wave ultrasonic application can be very useful to detect the defects in CFRP composites.展开更多
为了验证随碳纤维含量变化的碳纤维增强塑料(CFRP)层板的力学性能,按纤维含量的不同制作样板并进行拉伸及弯曲强度材料试验,对试验结果进行回归分析,并将分析结果与国际标准ISO12215和意大利船级社规范RINA Part B中提供的估算式进行比...为了验证随碳纤维含量变化的碳纤维增强塑料(CFRP)层板的力学性能,按纤维含量的不同制作样板并进行拉伸及弯曲强度材料试验,对试验结果进行回归分析,并将分析结果与国际标准ISO12215和意大利船级社规范RINA Part B中提供的估算式进行比较,随碳纤维含量的增加,积层板力学性能逐渐增强,并优于标准估算式,最大值出现在碳纤维含量为0.55之后的区间。所以,适当地提高碳纤维含量,可提高CFRP材料的比强度特性,有利于开发更加轻量的船体结构。展开更多
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
文摘A jig was developed for generating a shear wave. A pyramid with an isosceles triangle with two 45o was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. Therefore, an experimental way was performed in order to make shear wave on the bottom of aluminum alloyed pyramid. Also, a jig was manufactured and developed for generating a shear wave based on the computer numerical simulation. It is found that the experimentally shear wave variation of newly-designed jig is consistent with computer numerical simulation results and shear wave ultrasonic application can be very useful to detect the defects in CFRP composites.
文摘为了验证随碳纤维含量变化的碳纤维增强塑料(CFRP)层板的力学性能,按纤维含量的不同制作样板并进行拉伸及弯曲强度材料试验,对试验结果进行回归分析,并将分析结果与国际标准ISO12215和意大利船级社规范RINA Part B中提供的估算式进行比较,随碳纤维含量的增加,积层板力学性能逐渐增强,并优于标准估算式,最大值出现在碳纤维含量为0.55之后的区间。所以,适当地提高碳纤维含量,可提高CFRP材料的比强度特性,有利于开发更加轻量的船体结构。