We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an ov...We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.展开更多
Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been tr...Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been transferred to develop CMS lines in the background of cultivated pigeonpea. However, A2 (Cajanus scarabaeoides) and A4 (Cajanus cajanifolius) cytoplasms have been utilized most frequently. In order to study fertility restoration efficiency in F1 hybrids having either A2 or A4 cytoplasms, an experiment was conducted at the Indian Institute of Pulses Research (IIPR), Kanpur during 2008-2012. Four CMS lines namely Hy4A, H28A (each with A2 cytoplasm), ICP 2039A and ICP 2043A (both with A4 cytoplasm) were crossed with ten genotypes/restorers of long duration pigeonpea for two years. The F1 hybrids so-obtained were assessed in the succeeding years for pollen fertility and pod setting. All the pollinators except IPA 203 restored fertility in F1 hybrids derived from ICP 2039A and ICP 2043A (both having A4 cytoplasm). However, none of the restorers were effective in restoring fertility in hybrids derived from Hy4A and H28A (each with A2 cytoplasm). This could be ascribed to undesirable linkage drag still present in these two CMS lines having A2 cytoplasm. The F2 progenies derived from 4 hybrids (ICP 2039A × NA-1, ICP 2039A × Bahar, ICP 2043A × NA-1 and ICP 2043A × Bahar) segregated approximately into 3 fertile: 1 sterile plants. However, 2 F2 progenies having Pusa 9 as the restorer revealed approximately 15 fertile:1 sterile ratio. Thus monogenic and digenic duplicate gene action with complete dominance for fertility restoration was observed in F1 hybrids derived from CMS lines having A4 cytoplasm. F3 progenies from individual F2 plants of these crosses also confirmed the same pattern of fertility restoration. This study indicated that CMS lines based on A4 cytoplasm would be more desirable as these might have more number of restorers compared to those having A2 cytoplasm.展开更多
The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhib...The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.展开更多
Three new prenylated stilbenes, named as cajanusins A-C(1-3), and one new natural product cajanusin D(4), along with six known derivatives(5-10) were isolated from the leaves of Cajanus cajan. Their structures were fu...Three new prenylated stilbenes, named as cajanusins A-C(1-3), and one new natural product cajanusin D(4), along with six known derivatives(5-10) were isolated from the leaves of Cajanus cajan. Their structures were fully elucidated by means of extensive spectroscopic methods and comparison with data in the reported literatures. The new compounds of 1 and 2 were evaluated for in vitro cytotoxic activities against a panel of human cancer cell lines.展开更多
Objective To investigate the neuroprotective effects of four stilbenes, namely cajaninstilbene acid (CSA), Iongistyline A, Iongistyline C, and cajanolactone A, isolated from the leaves of Cajanus cajan. Methods Neur...Objective To investigate the neuroprotective effects of four stilbenes, namely cajaninstilbene acid (CSA), Iongistyline A, Iongistyline C, and cajanolactone A, isolated from the leaves of Cajanus cajan. Methods Neuroprotective effects of the four stilbenes were evaluated using rat pheochromocytoma cell line (PC12 cells) damage models induced by corticosterone (Cort) or glutamate. In order to elaborate whether the neuroprotective effects of stilbenes are related to anti-oxidant properties, both oxidant and anti-oxidant parameters were measured. Results The results of MTT assay and LDH release assay demonstrated that the four stilbenes possessed neuroprotective effects. Moreover, the treatment on PC12 cells with Cort or glutamate (Glu) could significantly increase the levels of ROS and MDA with decreasing the activities of SOD and CAT. However, the four tested stilbenes could significantly alleviate such situation by dropping out the levels of ROS and MDA, as well as enhancing the activities of SOD and CAT. Conclusion These results provide a scientific basis for further studies to explore the potential neuroprotective effects on neurodegenerative diseases.展开更多
A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced t...A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript as- sembly contigs (TACs) with an N50 of 1510 bp, the largest one being -8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping posi- tions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.展开更多
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the chara...Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the characteristic feature of this crop. This is primarily ascribed to its susceptibility/sensitivity to a number of biotic and abiotic factors. Among biotic factors, insects such as pod borer (Helicoverpa armigera), pod fly (Melanoagromyza obtusa) and spotted borer (Maruca vitrata) substantially damage the crop and result in significant economic losses. Management of these insects by genetic means has always been considered environment friendly approach. However, genetic improvement has always been impeded by limited genetic variability in the primary gene pool of pigeonpea. Wild species present in the secondary and tertiary gene pools have been reported to carry resistance for such insects. However, transfer of resistance through conventional backcrossing has not been much successful. It calls for gene introgression through marker assisted backcrossing (MABC) or advanced backcross breeding (AB breeding). In this review, we have attempted to assess the progress made through conventional and molecular breeding and suggested the ways to move further towards genetic enhancement for insects resistance in展开更多
Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst...Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst these, pigeonpea or red gram (Cajanus cajan (L.) Millspaugh) is an important food legume that can be grown under rainfed conditions with least inputs. Pigeonpea is rich in starch, protein, calcium, manganese, crude fiber, fat, trace elements, and minerals. Besides its high nutritional value, pigeonpea is also used as traditional folk medicine in India, China, Philippines and some other nations. Literature on this aspect show that pigeonpea is capable to prevent and cure a number of human ailments such as bronchitis, coughs, pneumonia, respiratory infections, dysentery, menstrual disorders, sores, wounds, abdominal tumors, tooth ache, and diabetes.展开更多
文摘We set out to model the oven-drying kinetics of a legume known as pigeon pea, harvested in the Bouenza department in the south-west of the Republic of Congo. The drying kinetics of pigeon peas was carried out in an oven under experimental conditions using temperatures of: 50°C, 60°C and 70°C. Seven mathematical models were used to describe pigeon pea drying. During drying, water loss was faster and shorter at 70°C [10.446 g/25 g wet weight (wwb) for 320 min (5.3 h)] compared to 50°C [10.996 g/25 g wet weight (wwb) for 520 min (8.6 h)] and 60°C [10.616 g/25 g wet weight (wwb) for 420 min (7.0 h)] where it was slower and longer. With regard to modeling, and based on the principle of choosing the right model focusing on the high value of R2 and low values of χ2 and RMSE, two models were selected, the Midili model for temperatures of 50°C and 60°C and the Henderson and Pabis model modified for temperature of 70°C showed better results. The R2, χ2 and RMSE values calculated for pigeon pea are 0.99985, 3.93404E-5 and 0.00627;0.9997, 9.245E-5 and 0.00962;0.99996, 1.56332E-5 and 0.00395 respectively at 50°C, 60°C and 70°C.
文摘Exploitation of hybrid vigour has been visualized as the most efficient option for increasing productivity in pigeonpea [Cajanus cajan (L.) Millspaugh]. Cytoplasms from various wild relatives of pigeonpea have been transferred to develop CMS lines in the background of cultivated pigeonpea. However, A2 (Cajanus scarabaeoides) and A4 (Cajanus cajanifolius) cytoplasms have been utilized most frequently. In order to study fertility restoration efficiency in F1 hybrids having either A2 or A4 cytoplasms, an experiment was conducted at the Indian Institute of Pulses Research (IIPR), Kanpur during 2008-2012. Four CMS lines namely Hy4A, H28A (each with A2 cytoplasm), ICP 2039A and ICP 2043A (both with A4 cytoplasm) were crossed with ten genotypes/restorers of long duration pigeonpea for two years. The F1 hybrids so-obtained were assessed in the succeeding years for pollen fertility and pod setting. All the pollinators except IPA 203 restored fertility in F1 hybrids derived from ICP 2039A and ICP 2043A (both having A4 cytoplasm). However, none of the restorers were effective in restoring fertility in hybrids derived from Hy4A and H28A (each with A2 cytoplasm). This could be ascribed to undesirable linkage drag still present in these two CMS lines having A2 cytoplasm. The F2 progenies derived from 4 hybrids (ICP 2039A × NA-1, ICP 2039A × Bahar, ICP 2043A × NA-1 and ICP 2043A × Bahar) segregated approximately into 3 fertile: 1 sterile plants. However, 2 F2 progenies having Pusa 9 as the restorer revealed approximately 15 fertile:1 sterile ratio. Thus monogenic and digenic duplicate gene action with complete dominance for fertility restoration was observed in F1 hybrids derived from CMS lines having A4 cytoplasm. F3 progenies from individual F2 plants of these crosses also confirmed the same pattern of fertility restoration. This study indicated that CMS lines based on A4 cytoplasm would be more desirable as these might have more number of restorers compared to those having A2 cytoplasm.
文摘The effect of 24-epibrassinolide on growth of pigeon pea [Cajanus cajan (L.) Millsp.] under aluminium toxicity was studied. 24-EBL reduced the impact of Al stress on plant growth. Particularly 24-EBL reduced the inhibitory impact of aluminium toxicity on root growth which was further manifested in overall improvement of vegetative growth. Application of 24-epibrassinolide removed the inhibitory influence of Al nodulation. The growth stimulation in Cajanus plants by 24-EBL under Al stress was associated with elevated levels of chlorophylls, nucleic acids and soluble proteins. 24-Epibrassinolide application enhanced proline content in Al<sup>3+</sup> stressed Cajanus plants. Further, the supplementation of 24-epibrassinolide to Al stress treatments increased the activities of antioxidative enzymes viz., catalase [EC 1.11.1.6];peroxidase [EC 1.11.1.7];superoxide dismutase [EC 1.15.1.1] and ascorbate peroxidase [EC 1.11.1.11]. Lipid peroxidation induced by Al was found reduced with the supplementation of 24-epibrassinolide. The present studies demonstrated the ameliorating capability of 24-epibrassinolide on the Al induced inhibition of plant growth of C. cajan.
基金supported by the National Natural Science Foundation of China(Nos.81773602 and 81502949)the Natural Science Foundation of Guangdong Province(Nos.2016A030313149 and 2016A020217015)+3 种基金the Innovative Team Project of GZUCM(No.2016KYTD04)Pearl River Science and Technology New Star Fund of Guangzhou(No.201605120849569)Guangdong Special Support Program(No.2017TQ04R599)the Foundation of Key Laboratory of Plant Resources Conservation and Sustainable Utilization,South China Botanical Garden,Chinese Academy of Sciences
文摘Three new prenylated stilbenes, named as cajanusins A-C(1-3), and one new natural product cajanusin D(4), along with six known derivatives(5-10) were isolated from the leaves of Cajanus cajan. Their structures were fully elucidated by means of extensive spectroscopic methods and comparison with data in the reported literatures. The new compounds of 1 and 2 were evaluated for in vitro cytotoxic activities against a panel of human cancer cell lines.
基金International Science and Technology Cooperation of China(2011DFA32730,1108)National Science and Technology Major Project(2012ZX09301002-001)
文摘Objective To investigate the neuroprotective effects of four stilbenes, namely cajaninstilbene acid (CSA), Iongistyline A, Iongistyline C, and cajanolactone A, isolated from the leaves of Cajanus cajan. Methods Neuroprotective effects of the four stilbenes were evaluated using rat pheochromocytoma cell line (PC12 cells) damage models induced by corticosterone (Cort) or glutamate. In order to elaborate whether the neuroprotective effects of stilbenes are related to anti-oxidant properties, both oxidant and anti-oxidant parameters were measured. Results The results of MTT assay and LDH release assay demonstrated that the four stilbenes possessed neuroprotective effects. Moreover, the treatment on PC12 cells with Cort or glutamate (Glu) could significantly increase the levels of ROS and MDA with decreasing the activities of SOD and CAT. However, the four tested stilbenes could significantly alleviate such situation by dropping out the levels of ROS and MDA, as well as enhancing the activities of SOD and CAT. Conclusion These results provide a scientific basis for further studies to explore the potential neuroprotective effects on neurodegenerative diseases.
文摘A comprehensive transcriptome assembly for pigeonpea has been developed by analyzing 128.9 million short Illumina GA IIx single end reads, 2.19 million single end FLX/454 reads, and 18 353 Sanger expressed sequenced tags from more than 16 genotypes. The resultant transcriptome assembly, referred to as CcTA v2, comprised 21 434 transcript as- sembly contigs (TACs) with an N50 of 1510 bp, the largest one being -8 kb. Of the 21 434 TACs, 16 622 (77.5%) could be mapped on to the soybean genome build 1.0.9 under fairly stringent alignment parameters. Based on knowledge of intron junctions, 10 009 primer pairs were designed from 5033 TACs for amplifying intron spanning regions (ISRs). By using in silico mapping of BAC-end-derived SSR loci of pigeonpea on the soybean genome as a reference, putative mapping posi- tions at the chromosome level were predicted for 6284 ISR markers, covering all 11 pigeonpea chromosomes. A subset of 128 ISR markers were analyzed on a set of eight genotypes. While 116 markers were validated, 70 markers showed one to three alleles, with an average of 0.16 polymorphism information content (PIC) value. In summary, the CcTA v2 transcript assembly and ISR markers will serve as a useful resource to accelerate genetic research and breeding applications in pigeonpea.
文摘Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important food legume of the semi-arid tropics (SAT) sustaining livelihood of millions of people. Stagnant and unstable yield per hectare all over the world is the characteristic feature of this crop. This is primarily ascribed to its susceptibility/sensitivity to a number of biotic and abiotic factors. Among biotic factors, insects such as pod borer (Helicoverpa armigera), pod fly (Melanoagromyza obtusa) and spotted borer (Maruca vitrata) substantially damage the crop and result in significant economic losses. Management of these insects by genetic means has always been considered environment friendly approach. However, genetic improvement has always been impeded by limited genetic variability in the primary gene pool of pigeonpea. Wild species present in the secondary and tertiary gene pools have been reported to carry resistance for such insects. However, transfer of resistance through conventional backcrossing has not been much successful. It calls for gene introgression through marker assisted backcrossing (MABC) or advanced backcross breeding (AB breeding). In this review, we have attempted to assess the progress made through conventional and molecular breeding and suggested the ways to move further towards genetic enhancement for insects resistance in
文摘Protein mal-nutrition is widespread among poor of developing and under developed countries. Since animal protein is beyond the reach of this group, their primary protein supply comes from plant based products. Amongst these, pigeonpea or red gram (Cajanus cajan (L.) Millspaugh) is an important food legume that can be grown under rainfed conditions with least inputs. Pigeonpea is rich in starch, protein, calcium, manganese, crude fiber, fat, trace elements, and minerals. Besides its high nutritional value, pigeonpea is also used as traditional folk medicine in India, China, Philippines and some other nations. Literature on this aspect show that pigeonpea is capable to prevent and cure a number of human ailments such as bronchitis, coughs, pneumonia, respiratory infections, dysentery, menstrual disorders, sores, wounds, abdominal tumors, tooth ache, and diabetes.