Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtratio...Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtration throughout the entire porous medium, are studied by different models. A unified approach for the transport and deposition of particles based on the deep bed filtration model is proposed. A variable suspension flow rate, proportional to the number of free pores at the inlet of the porous medium, is considered. To model cake filtration, this flow rate is introduced into the mass balance equation of deep bed filtration. For the cake filtration without deposit erosion,the suspension flow rate decreases to zero, and the suspension does not penetrate deep into the porous medium. In the case of the cake filtration with erosion, the suspension flow rate is nonzero, and the deposit is distributed throughout the entire porous medium. An exact solution is obtained for a constant filtration function. The method of characteristics is used to construct the asymptotics of the concentration front of suspended and retained particles for a filtration function in a general form. Explicit formulae are obtained for a linear filtration function. The properties of these solutions are studied in detail.展开更多
Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice ...Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.展开更多
Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the co...Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the completion of drilling operations and become waste, which can have a large negative impact on the environment. Drilling mate- rials and additives together with drill cuttings, oil, and water constitute waste drilling fluids, which ultimately are dumped onto soil, surface water, groundwater, and air. Environmental pollution is found to be a serious threat while drilling complex wells or high-temperature deep wells as these types of wells involve the use of oil-based drilling fluid systems and high-performance water-based drilling fluid systems. The preservation of the environment on a global level is now important as various organizations have set up initiatives to drive the usage of toxic chemicals as drilling fluid additives. This paper presents an approach where grass is introduced as a sustainable drilling fluid additive with no environmental problems. Simple water- based drilling fluids were formulated using bentonite, powdered grass, and water to analyze the rheological and filtration characteristics of the new drilling fluid. A particle size distribution test was conducted to determine the par- ticle size of the grass sample by the sieve analysis method. Experiments were conducted on grass samples of 300, 90, and 35 μm to study the characteristics and behavior of the newly developed drilling fluid at room temperature. The results show that grass samples with varying particle sizes and concentrations may improve the viscosity, gel strength, and filtration of the bentonite drilling fluid. These obser- vations recommend the use of grass as a rheological modifier, filtration control agent, and pH control agent to substitute toxic materials from drilling fluids.展开更多
Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling fo...Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling for the development of new separation concepts, one of which lies in hybrid separation using the superposition of a magnetic field for magnetic particles. Possible product portfolio of such separation consists of pigment production, nanomagnetics production for electronics and bio separation, A promising step in that direction is magnetic field enhanced cake filtration, which has by now progressed from batch to continuous ooeration. In sedimentation processes in a mass force field the settling behaviour of particles strongly depends on physico-chemical properties, concentration and size distribution of the particles. By adjusting the pH, the interparticle forces, in particular the electrostatic repulsion, can be manipulated. For remanent magnetic particles such as magnetite, pre-treatment in a magnetic field could lead to a change of interparticle interactions. By magnetizing the particles apart from van der Waals attraction and electrostatic repulsion, an additional potential is induced, the magnetic attraction, which could easily dominate the other potentials and result in agglomeration in the primary minimum. By sedimentation analysis, a wide spectrum of parameters like pH, magnetic field strength and concentration have been investigated. The results show a strong increase of sedimentation velocity by magnetic flocculation of the raw suspension. This leads to a rise in throughput due to the acceleration of sedimentation kinetics by imparting a non-chemical interaction to the physico-chemical properties in the feed stream of the separation apparatus.展开更多
文摘Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtration throughout the entire porous medium, are studied by different models. A unified approach for the transport and deposition of particles based on the deep bed filtration model is proposed. A variable suspension flow rate, proportional to the number of free pores at the inlet of the porous medium, is considered. To model cake filtration, this flow rate is introduced into the mass balance equation of deep bed filtration. For the cake filtration without deposit erosion,the suspension flow rate decreases to zero, and the suspension does not penetrate deep into the porous medium. In the case of the cake filtration with erosion, the suspension flow rate is nonzero, and the deposit is distributed throughout the entire porous medium. An exact solution is obtained for a constant filtration function. The method of characteristics is used to construct the asymptotics of the concentration front of suspended and retained particles for a filtration function in a general form. Explicit formulae are obtained for a linear filtration function. The properties of these solutions are studied in detail.
文摘Cake filtration has been widely used in many chemical processes with more non-Newtonian, highly viscous and compressible materials involved. Neither traditional nor modem filtration theory can be applied in practice "Equivalent cake filtration model" is a recently developed mathematical model to describe cake filtration for both Newtonian and non-Newtonian fluids, in either steady or unsteady filtration stages. This model has two strengths: (1) It can be used to determine equivalent capillary radii and predict filtration quality based on the properties of solid/liquid system and operation parameters; and (2) to calculate cake specific resistance and its variations with time at various cake thickness locations.
基金the support provided by the Deanship of Scientific Research(DSR)at King Fahd University of Petroleum&Minerals(KFUPM)for funding this work through Project No.IN 141008
文摘Excellent drilling fluid techniques are one of the significant guaranteed measures to insure safety, qual- ity, efficiency, and speediness of drilling operations. Dril- ling fluids are generally discarded after the completion of drilling operations and become waste, which can have a large negative impact on the environment. Drilling mate- rials and additives together with drill cuttings, oil, and water constitute waste drilling fluids, which ultimately are dumped onto soil, surface water, groundwater, and air. Environmental pollution is found to be a serious threat while drilling complex wells or high-temperature deep wells as these types of wells involve the use of oil-based drilling fluid systems and high-performance water-based drilling fluid systems. The preservation of the environment on a global level is now important as various organizations have set up initiatives to drive the usage of toxic chemicals as drilling fluid additives. This paper presents an approach where grass is introduced as a sustainable drilling fluid additive with no environmental problems. Simple water- based drilling fluids were formulated using bentonite, powdered grass, and water to analyze the rheological and filtration characteristics of the new drilling fluid. A particle size distribution test was conducted to determine the par- ticle size of the grass sample by the sieve analysis method. Experiments were conducted on grass samples of 300, 90, and 35 μm to study the characteristics and behavior of the newly developed drilling fluid at room temperature. The results show that grass samples with varying particle sizes and concentrations may improve the viscosity, gel strength, and filtration of the bentonite drilling fluid. These obser- vations recommend the use of grass as a rheological modifier, filtration control agent, and pH control agent to substitute toxic materials from drilling fluids.
文摘Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling for the development of new separation concepts, one of which lies in hybrid separation using the superposition of a magnetic field for magnetic particles. Possible product portfolio of such separation consists of pigment production, nanomagnetics production for electronics and bio separation, A promising step in that direction is magnetic field enhanced cake filtration, which has by now progressed from batch to continuous ooeration. In sedimentation processes in a mass force field the settling behaviour of particles strongly depends on physico-chemical properties, concentration and size distribution of the particles. By adjusting the pH, the interparticle forces, in particular the electrostatic repulsion, can be manipulated. For remanent magnetic particles such as magnetite, pre-treatment in a magnetic field could lead to a change of interparticle interactions. By magnetizing the particles apart from van der Waals attraction and electrostatic repulsion, an additional potential is induced, the magnetic attraction, which could easily dominate the other potentials and result in agglomeration in the primary minimum. By sedimentation analysis, a wide spectrum of parameters like pH, magnetic field strength and concentration have been investigated. The results show a strong increase of sedimentation velocity by magnetic flocculation of the raw suspension. This leads to a rise in throughput due to the acceleration of sedimentation kinetics by imparting a non-chemical interaction to the physico-chemical properties in the feed stream of the separation apparatus.