The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show ...The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show that addition of both Mg^2+ and Fe^3+ increased induction time and decreased the growth efficiency up to 50% compared with the baseline(without impurities) depending on the concentration and the type of impurity. The effects of Mg^2+ and Fe^3+ on the surface energy and the rate of nucleation were estimated by employing the classical nucleation theory. The surface energy decreased by 8% and 14% with the addition of 0.02 mol/L magnesium or ferric ions, respectively, compared to the baseline. Mg^2+ and Fe^3+ made the growth rate of the (020), (021) and (040) faces of gypsum crystal a much greater reduction, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes. Furthermore, an edge detection program was developed to quantify the effects of impurities on the filtration rate of gypsum product. The results show that the inhibition efficiency of the presence of 0.02 mol/L Mg^2+ and Fe^3+ on the filtration rate of gypsum crystal ranges from 22% to 39%.展开更多
1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate ...1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate is known as a major展开更多
α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commerciall...α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.展开更多
基金Supported by the State 11.5 Support Plan(No.2006BAA01B04)the New Century Excellent Talent Support Plan of China (No.NCET-06-0513)
文摘The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show that addition of both Mg^2+ and Fe^3+ increased induction time and decreased the growth efficiency up to 50% compared with the baseline(without impurities) depending on the concentration and the type of impurity. The effects of Mg^2+ and Fe^3+ on the surface energy and the rate of nucleation were estimated by employing the classical nucleation theory. The surface energy decreased by 8% and 14% with the addition of 0.02 mol/L magnesium or ferric ions, respectively, compared to the baseline. Mg^2+ and Fe^3+ made the growth rate of the (020), (021) and (040) faces of gypsum crystal a much greater reduction, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes. Furthermore, an edge detection program was developed to quantify the effects of impurities on the filtration rate of gypsum product. The results show that the inhibition efficiency of the presence of 0.02 mol/L Mg^2+ and Fe^3+ on the filtration rate of gypsum crystal ranges from 22% to 39%.
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China(20131208120001)
文摘1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate is known as a major
基金financial support from the Swedish Innovation Agency(VINNOVA)and China Scholarship Council(CSC).
文摘α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.